scholarly journals Development of a reverse transcription loop mediated isothermal amplification assay for the detection of Mouse reovirus type 3 in laboratory mice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taofeng Lu ◽  
Lingyun Tao ◽  
Haibo Yu ◽  
Hui Zhang ◽  
Yanjun Wu ◽  
...  

AbstractMouse reovirus type 3 (Reo-3) infection is a viral disease that is harmful for laboratory mice. No rapid and accurate detection methods are currently available for this infection. In this study, we describe a rapid, simple, closed-tube, one step, reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for Reo-3 and compare our assay with indirect enzyme-linked immunosorbent assay (ELISA). Three sets of RT-LAMP primers were designed by sequence analysis of a specific conserved sequence of the Reo-3 S1 gene. Using RS2 primer set, the RT-LAMP assay required 60 min at 65 °C to amplify the S1 gene in one step by using Reo-3 RNA template and had no cross-reactivity with the other related pathogens, such as Sendai virus (SV), pneumonia virus of mice (PVM), mouse hepatitis virus (MHV), Ectromelia virus (Ect), minute virus of mice (MVM), P. pneumotropica, B. bronchiseptica, K. pneumonia and P. aeruginosa. in our LAMP reaction system. The limit of detection (LOD) of our RT-LAMP assay is 4 fg/μL. The established RT-LAMP assay enabled visual detection when fluorescence detection reagents were added, and was demonstrated to be effective and efficient. We tested 30 clinical blood samples and five artificial positive samples from SPF mice, the concordance between the two methods for blood samples was 100% compared with indirect ELISA and RT-PCR. Considering its performance, specificity, sensitivity, and repeatability, the developed RT-LAMP could be a valuable tool to supply a more effective Reo-3 detection method in laboratory animal quality monitoring.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Severino Jefferson Ribeiro da Silva ◽  
Keith Pardee ◽  
Udeni B. R. Balasuriya ◽  
Lindomar Pena

AbstractWe have previously developed and validated a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of the Zika virus (ZIKV) from mosquito samples. Patient diagnosis of ZIKV is currently carried out in centralized laboratories using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), which, while the gold standard molecular method, has several drawbacks for use in remote and low-resource settings, such as high cost and the need of specialized equipment. Point-of-care (POC) diagnostic platforms have the potential to overcome these limitations, especially in low-resource countries where ZIKV is endemic. With this in mind, here we optimized and validated our RT-LAMP assay for rapid detection of ZIKV from patient samples. We found that the assay detected ZIKV from diverse sample types (serum, urine, saliva, and semen) in as little as 20 min, without RNA extraction. The RT-LAMP assay was highly specific and up to 100 times more sensitive than RT-qPCR. We then validated the assay using 100 patient serum samples collected from suspected cases of arbovirus infection in the state of Pernambuco, which was at the epicenter of the last Zika epidemic. Analysis of the results, in comparison to RT-qPCR, found that the ZIKV RT-LAMP assay provided sensitivity of 100%, specificity of 93.75%, and an overall accuracy of 95.00%. Taken together, the RT-LAMP assay provides a straightforward and inexpensive alternative for the diagnosis of ZIKV from patients and has the potential to increase diagnostic capacity in ZIKV-affected areas, particularly in low and middle-income countries.


Author(s):  
Meng Yee Lai ◽  
Soo Nee Tang ◽  
Yee Ling Lau

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading rapidly all over the world. In the absence of effective treatments or a vaccine, there is an urgent need to develop a more rapid and simple detection technology of COVID-19. We describe a WarmStart colorimetric reverse transcription–loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2. The detection limit for this assay was 1 copy/µL SARS-CoV-2. To test the clinical sensitivity and specificity of the assay, 37 positive and 20 negative samples were used. The WarmStart colorimetric RT-LAMP had 100% sensitivity and specificity. End products were detected by direct observation, thereby eliminating the need for post-amplification processing steps. WarmStart colorimetric RT-LAMP provides an opportunity to facilitate virus detection in resource-limited settings without a sophisticated diagnostic infrastructure.


Author(s):  
Matthew A Lalli ◽  
Joshua S Langmade ◽  
Xuhua Chen ◽  
Catrina C Fronick ◽  
Christopher S Sawyer ◽  
...  

Abstract Background Rapid, reliable, and widespread testing is required to curtail the ongoing COVID-19 pandemic. Current gold-standard nucleic acid tests are hampered by supply shortages in critical reagents including nasal swabs, RNA extraction kits, personal protective equipment, instrumentation, and labor. Methods To overcome these challenges, we developed a rapid colorimetric assay using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) optimized on human saliva samples without an RNA purification step. We describe the optimization of saliva pretreatment protocols to enable analytically sensitive viral detection by RT-LAMP. We optimized the RT-LAMP reaction conditions and implemented high-throughput unbiased methods for assay interpretation. We tested whether saliva pretreatment could also enable viral detection by conventional reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Finally, we validated these assays on clinical samples. Results The optimized saliva pretreatment protocol enabled analytically sensitive extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP or RT-qPCR. In simulated samples, the optimized RT-LAMP assay had a limit of detection of 59 (95% confidence interval: 44–104) particle copies per reaction. We highlighted the flexibility of LAMP assay implementation using 3 readouts: naked-eye colorimetry, spectrophotometry, and real-time fluorescence. In a set of 30 clinical saliva samples, colorimetric RT-LAMP and RT-qPCR assays performed directly on pretreated saliva samples without RNA extraction had accuracies greater than 90%. Conclusions Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP is a simple, sensitive, and cost-effective approach with broad potential to expand diagnostic testing for the virus causing COVID-19.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Daniel Moreira de Avelar ◽  
Débora Moreira Carvalho ◽  
Ana Rabello

Visceral leishmaniasis (VL) is considered a major public health concern in Brazil and several regions of the world. A recent advance in the diagnosis of infectious diseases was the development of loop-mediated isothermal amplification (LAMP). The aim of this study was to develop and evaluate a new LAMP assay for detection of K26 antigen-coding gene of L. donovani complex. A total of 219 blood samples of immunocompetent patients, including 114 VL cases and 105 non-VL cases, were analyzed for the diagnosis of VL in the present study. Diagnostic accuracy was calculated against a combination of parasitological and/or serological tests as a reference standard. The results were compared to those of kDNA Leishmania-PCR. The detection limit for the K26-Lamp assay was 1fg L. infantum purified DNA and 100 parasites/mL within 60 min of amplification time with visual detection for turbidity. The assay was specific for L. donovani complex. Sensitivity, specificity, and accuracy were 98.2%, 98.1%, and 98.2%, respectively, for K26-LAMP and 100%, 100%, and 100%, respectively, for kDNA Leishmania-PCR. Excellent agreement was observed between K26-LAMP and kDNA Leishmania-PCR assays (K = 0.96). A highly sensitive and specific LAMP assay targeting K26 antigen-coding gene of L. donovani complex was developed for diagnosis in peripheral blood samples of VL patients.


Sign in / Sign up

Export Citation Format

Share Document