scholarly journals Cross-modal motion aftereffects transfer between vision and touch in early deaf adults

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kunchen Xiao ◽  
Yi Gao ◽  
Syed Asif Imran ◽  
Shahida Chowdhury ◽  
Sesh Commuri ◽  
...  

AbstractPrevious research on early deafness has primarily focused on the behavioral and neural changes in the intact visual and tactile modalities. However, how early deafness changes the interplay of these two modalities is not well understood. In the current study, we investigated the effect of auditory deprivation on visuo-tactile interaction by measuring the cross-modal motion aftereffect. Consistent with previous findings, motion aftereffect transferred between vision and touch in a bidirectional manner in hearing participants. However, for deaf participants, the cross-modal transfer occurred only in the tactile-to-visual direction but not in the visual-to-tactile direction. This unidirectional cross-modal motion aftereffect found in the deaf participants could not be explained by unisensory motion aftereffect or discrimination threshold. The results suggest a reduced visual influence on tactile motion perception in early deaf individuals.

Perception ◽  
1994 ◽  
Vol 23 (10) ◽  
pp. 1257-1264 ◽  
Author(s):  
Michael T Swanston

Evidence concerning the origin of the motion aftereffect (MAE) is assessed in terms of a model of levels of representation in visual motion perception proposed by Wade and Swanston. Very few experiments have been designed so as to permit unambiguous conclusions to be drawn. The requirements for such experiments are identified. Whereas retinocentric motion could in principle give rise to the MAE, data are not available which would enable a conclusion to be drawn. There is good evidence for a patterncentric origin, indicating that the MAE is primarily the result of adaptation in the systems responsible for detecting relative visual motion. There is evidence for a further contribution from the process that compensates retinocentric motion for eye movements, in the form of nonveridical information for eye movements. There may also be an effect at the level at which perceived distance and self-movement information are combined with egocentric motion to give a geocentric representation which provides the basis for reports of phenomenal experience. It is concluded that the MAE can be caused by changes in activity at more than one level of representation, and cannot be ascribed to a single underlying process.


Perception ◽  
1986 ◽  
Vol 15 (5) ◽  
pp. 603-612 ◽  
Author(s):  
Michael J Wright

Adapting to a drifting grating (temporal frequency 4 Hz, contrast 0.4) in the periphery gave rise to a motion aftereffect (MAE) when the grating was stopped. A standard unadapted foveal grating was matched to the apparent velocity of the MAE, and the matching velocity was approximately constant regardless of the visual field position and spatial frequency of the adapting grating. On the other hand, when the MAE was measured by nulling with real motion of the test grating, nulling velocity was found to increase with eccentricity. The nulling velocity was constant when scaled to compensate for changes in the spatial ‘grain’ of the visual field. Thus apparent velocity of MAE is constant across the visual field, but requires a greater velocity of real motion to cancel it in the periphery. This confirms that the mechanism underlying MAE is spatially-scaled with eccentricity, but temporally homogeneous. A further indication of temporal homogeneity is that when MAE is tracked, by matching or by nulling, the time course of temporal decay of the aftereffect is similar for central and for peripheral stimuli.


Perception ◽  
1995 ◽  
Vol 24 (12) ◽  
pp. 1383-1396 ◽  
Author(s):  
David Alais ◽  
Maarten J van der Smagt ◽  
Frans A J Verstraten ◽  
Wim A van de Grind

The stimuli in these experiments are square-wave luminance gratings with an array of small random dots covering the high-luminance regions. Owing to the texture, the direction of these gratings, when seen through a circular aperture, is disambiguated because the visual system is provided with an unambiguous motion energy. Thus, the direction of textured gratings can be varied independently of grating orientation. When subjects are required to judge the direction of textured gratings moving obliquely relative to their orientation, they can do so accurately (experiment 1). This is of interest because most studies of one-dimensional motion perception have involved (textureless) luminance-defined sine-wave or square-wave gratings, and the perceived direction of these gratings is constrained by the aperture problem to be orthogonal to their orientation. Thus, direction and orientation have often been confounded. Interestingly, when subjects are required to judge the direction of an obliquely moving textured grating during a period of adaptation and then the direction of the motion aftereffect (MAE) immediately following adaptation (experiments 2 and 3), these directions are not directly opposite each other. MAE directions were always more orthogonal to the orientation of the adapting grating than the corresponding direction judgments during adaptation (by as much as 25°). These results are not readily explained by conventional MAE models and possible accounts are considered.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 170-170
Author(s):  
N J Wade ◽  
V Pardieu ◽  
M T Swanston

The local motion adaptation at the basis of the motion aftereffect (MAE) can be expressed in a variety of ways, depending upon the structure of the test display (N J Wade, L Spillmann, M T Swanston Vision Research in press). This has been demonstrated with MAEs from induced motion: if adaptation is to two moving (Surround) gratings, an MAE is seen in the central grating if two gratings surround it, but in the flanking gratings when they are themselves surrounded in the test stimulus. We report two experiments in which the characteristics of the test display and of the local adaptation process have been examined. In experiment 1, five vertical gratings were presented during adaptation; the outermost and central gratings remained stationary and those flanking the centre moved laterally. The test display always consisted of three stationary gratings: either the central three or the lower three equivalent to the locations of the adaptation display. MAEs were only recorded in the Centre and not in the Surround, irrespective of whether the Centre or Surround had been exposed to motion during adaptation. MAEs in the Centre were in opposite directions, reflecting the influence of Surround adaptation. The influence of adapting motion in different directions was examined in experiment 2. The upper grating always received the same direction of motion during adaptation, and the lower grating was absent, stationary, or moving in the same or in the opposite direction. The results indicate that an MAE is visible in the upper grating only after differential adaptation between the upper and lower gratings.


2002 ◽  
Vol 13 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Yuji Kobayashi ◽  
Aihide Yoshino ◽  
Tsuneyuki Ogasawara ◽  
Soichiro Nomura

2017 ◽  
Vol 284 (1858) ◽  
pp. 20170673 ◽  
Author(s):  
Irene Senna ◽  
Cesare V. Parise ◽  
Marc O. Ernst

Unlike vision, the mechanisms underlying auditory motion perception are poorly understood. Here we describe an auditory motion illusion revealing a novel cue to auditory speed perception: the temporal frequency of amplitude modulation (AM-frequency), typical for rattling sounds. Naturally, corrugated objects sliding across each other generate rattling sounds whose AM-frequency tends to directly correlate with speed. We found that AM-frequency modulates auditory speed perception in a highly systematic fashion: moving sounds with higher AM-frequency are perceived as moving faster than sounds with lower AM-frequency. Even more interestingly, sounds with higher AM-frequency also induce stronger motion aftereffects. This reveals the existence of specialized neural mechanisms for auditory motion perception, which are sensitive to AM-frequency. Thus, in spatial hearing, the brain successfully capitalizes on the AM-frequency of rattling sounds to estimate the speed of moving objects. This tightly parallels previous findings in motion vision, where spatio-temporal frequency of moving displays systematically affects both speed perception and the magnitude of the motion aftereffects. Such an analogy with vision suggests that motion detection may rely on canonical computations, with similar neural mechanisms shared across the different modalities.


Perception ◽  
1980 ◽  
Vol 9 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Patrick Cavanagh ◽  
Olga Eizner Favreau

Observers adapted to motion by looking at rotating logarithmic spirals. They were tested with a stationary mirror image of the adapting spiral in which all contours were at 90° to those of the first spiral. Motion aftereffects were reported in the contrarotational direction—that is, observers who had seen clockwise rotating motion reported seeing counterclockwise aftereffects. These aftereffects lasted one-third as long as the aftereffects obtained when the adapting spiral was used as the test figure. These two aftereffects were shown to have different storage properties, thereby indexing the operation of at least two different mechanisms. We interpret the motion aftereffect that is obtained with the mirror-image stimulus as indicative of the existence of global rotation detectors.


Perception ◽  
1988 ◽  
Vol 17 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Peter Wenderoth ◽  
Rohan Bray ◽  
Syren Johnstone

A stationary vertical test grating appears to drift to the left after adaptation to an inducing grating drifting to the right, this being known as the motion aftereffect (MAE). Pattern-specific motion aftereffects (PSMAEs) induced by superimposed pairs of gratings in which the component gratings drift up and down but the observer sees a single coherent plaid drifting to the right have been investigated. Two experiments are reported in which it is demonstrated that the PSMAE is tuned more to the motion of the pattern than to the orientation and direction of motion of the component gratings. However, when subjects adapt to the component gratings in alternation, aftereffect magnitude is dependent upon the individual grating orientations and motion directions. These results can be interpreted in terms of extrastriate contributions to the PSMAE, possibly arising from the middle temporal area, where some cells, unlike those in striate cortex (V1), are tuned to pattern motion rather than to component motion.


2009 ◽  
Vol 102 (5) ◽  
pp. 3016-3025 ◽  
Author(s):  
Miguel Castelo-Branco ◽  
Lajos R. Kozak ◽  
Elia Formisano ◽  
João Teixeira ◽  
João Xavier ◽  
...  

Activity in the human motion complex (hMT+/V5) is related to the perception of motion, be it either real surface motion or an illusion of motion such as apparent motion (AM) or motion aftereffect (MAE). It is a long-lasting debate whether illusory motion-related activations in hMT+ represent the motion itself or attention to it. We have asked whether hMT+ responses to MAEs are present when shifts in arousal are suppressed and attention is focused on concurrent motion versus nonmotion features. Significant enhancement of hMT+ activity was observed during MAEs when attention was focused either on concurrent spatial angle or color features. This observation was confirmed by direct comparison of adapting (MAE inducing) versus nonadapting conditions. In contrast, this effect was diminished when subjects had to report on concomitant speed changes of superimposed AM. The same finding was observed for concomitant orthogonal real motion (RM), suggesting that selective attention to concurrent illusory or real motion was interfering with the saliency of MAE signals in hMT+. We conclude that MAE-related changes in the global activity of hMT+ are present provided selective attention is not focused on an interfering feature such as concurrent motion. Accordingly, there is a genuine MAE-related motion signal in hMT+ that is neither explained by shifts in arousal nor by selective attention.


Perception ◽  
1989 ◽  
Vol 18 (6) ◽  
pp. 753-765 ◽  
Author(s):  
Barbara Webb ◽  
Peter Wenderoth

The Marr—Ullman model for motion detection in the human visual system functions by means of the dual input of polarity-specific edge detectors and luminance change detectors. Moulden and Begg (1986) found a polarity-specific motion aftereffect which they claimed provided support for this dual input model. The logic of their experiment is examined, and it is shown that several additional predictions arise from the Marr—Ullman model, which were not supported by Moulden and Begg's study. A more powerful experiment was carried out and these additional predictions were disconfirmed, although the polarity-specific effect did emerge. A consideration of alternative explanations of this effect led to a second experiment in which an attempt was made to discover the actual determinants of the effect. This revealed that polarity-specific units are unlikely to play any part in the phenomenon. It was concluded, in the light of this and other evidence, that one of a class of alternative models is more likely to be the actual mechanism for motion perception. However, careful consideration of the Marr—Ullman model indicated that it may be untestable in principle if various differentially weighted levels of neural integration are envisaged.


Sign in / Sign up

Export Citation Format

Share Document