scholarly journals Lerf–Klinowski-type models of graphene oxide and reduced graphene oxide are robust in analyzing non-covalent functionalization with porphyrins

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandra Siklitskaya ◽  
Ewelina Gacka ◽  
Daria Larowska ◽  
Marta Mazurkiewicz-Pawlicka ◽  
Artur Malolepszy ◽  
...  

AbstractGraphene-based nanohybrids are good candidates for various applications. However, graphene exhibits some unwanted features such as low solubility in an aqueous solution or tendency to aggregate, limiting its potential applications. On the contrary, its derivatives, such as graphene oxide (GO) and reduced graphene oxide (RGO), have excellent properties and can be easily produced in large quantities. GO/RGO nanohybrids with porphyrins were shown to possess great potential in the field of photocatalytic hydrogen production, pollutant photodegradation, optical sensing, or drug delivery. Despite the rapid progress in experimental research on the porphyrin-graphene hybrids some fundamental questions about the structures and the interaction between components in these systems still remain open. In this work, we combine detailed experimental and theoretical studies to investigate the nature of the interaction between the GO/RGO and two metal-free porphyrins 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) and 5,10,15,20-tetrakis(4-hydroxyphenyl) porphyrin (TPPH)]. The two porphyrins form stable nanohybrids with GO/RGO support, although both porphyrins exhibited a slightly higher affinity to RGO. We validated finite, Lerf–Klinowski-type (Lerf et al. in J Phys Chem B 102:4477, 1998) structural models of GO ($$\hbox {C}_{59}\hbox {O}_{26}\hbox {H}_{26}$$ C 59 O 26 H 26 ) and RGO ($$\hbox {C}_{59}\hbox {O}_{17}\hbox {H}_{26}$$ C 59 O 17 H 26 ) and successfully used them in ab initio absorption spectra simulations to track back the origin of experimentally observed spectral features. We also investigated the nature of low-lying excited states with high-level wavefunction-based methods and shown that states’ density becomes denser upon nanohybrid formation. The studied nanohybrids are non-emissive, and our study suggests that this is due to excited states that gain significant charge-transfer character. The presented efficient simulation protocol may ease the properties screening of new GO/RGO-nanohybrids.

2021 ◽  
pp. 1-4
Author(s):  
Solomon L Joseph ◽  
◽  
Agumba O John ◽  
Fanuel M Keheze ◽  
◽  
...  

Carbon nanomaterials have recently attracted wide scientific applications due to their tunable properties. These novel materials act as best fillers that can provide substantial benefits due to their high strength, thermal conductivity, and electrical conductivities. With their huge applications as bulk materials, when implemented in polymer matrix as fillers, they give rise to new promising materials with which their properties can be tuned to suit a particular application. Besides the development of these new nanocomposite materials, there exist some challenges which must be fully surpassed to explore the potentiality of application of carbon-based nanocomposites. Reduced graphene oxide is one of the carbon derivatives which has attracted the current advancement in technology, and recently, it found its new applications in super capacitors used in electronic industries. The limiting factor for its exploration is the affordability. New and affordable sources of these graphene-based nanomaterial have to be devised, for fully realization of their potential applications. In this study, reduced graphene oxide and the bio-polymer chitosan were extracted from the locally available bio waste materials. Nanocomposites were prepared at 50% rGO: chitosan ratio. The films were then prepared by spin coating method. Prepared films were subjected to morphological analysis. From the results, it was observed that rGO induced chitosan crystallization, which led to formation of dendritic structures. Cellulose nanocrystals have thus displayed temperature dependent positive uniaxial birefringence


Nanoscale ◽  
2015 ◽  
Vol 7 (8) ◽  
pp. 3548-3557 ◽  
Author(s):  
Hao Wang ◽  
Shu-Guang Bi ◽  
Yun-Sheng Ye ◽  
Yang Xue ◽  
Xiao-Lin Xie ◽  
...  

Polymer-functionalized reduced graphene oxide (polymer-FG), produced as individually dispersed graphene sheets, offers new possibilities for the production of nanomaterials that are useful for a broad range of potential applications.


Chem ◽  
2017 ◽  
Vol 3 (5) ◽  
pp. 846-860 ◽  
Author(s):  
Plawan Kumar Jha ◽  
Santosh Kumar Singh ◽  
Vikash Kumar ◽  
Shammi Rana ◽  
Sreekumar Kurungot ◽  
...  

2021 ◽  
Vol 21 (4) ◽  
pp. 2302-2311
Author(s):  
A. Udrescu ◽  
N. Toulbe ◽  
E. Matei ◽  
M. Baibarac

The azathioprine (AZA) electrochemical adsorption onto the screen-printed carbon electrodes (SPCE) modified with the reduced graphene oxide (RGO) sheets in the absence and in the presence of polyaniline–emeraldine salt (PANI-ES) is reported in this work. Using cyclic voltammetry (CV), in the case of the SPCE modified with the RGO sheets non-functionalized and functionalized with PANI-ES, respectively, an irreversible process at the electrode/electrolyte interface is highlighted to take place. In the case of the SPCE modified with the non-functionalized RGO sheets (SPCERGO), the oxidation-reduction processes induce an up-shift of the AZA Raman lines from 856 and 1011 cm-1 to 863 and 1020 cm-1, respectively. These variations indicate an AZA adsorption onto the surface of the SPCE modified with the RGO sheets that takes place throught the imidazole and pyrimidine cycles of mercaptopurine, when the generation of the π–π* bonds between the mercaptopurine structure and hexagonal carbon cycles of RGO occurs. The electrochemical functionalization of the RGO sheets with PANI-ES is proved by the appearance of the Raman lines at 1165, 1332-1371, 1496 and 1585 and 1616 cm-1. The oxidation-reduction processes induced at the interface of the SPCE modified with PANI-ES functionalized RGO sheets and the electrolyte consisting into a phosphate buffer (PB) and AZA lead to the generation of new positive charges onto the PANI macromolecular chain and the adsorption of the drug on the working electrode surface that takes place via the π–π* bonds established between the benzene/quinoide rings of PANI and the imidazole/ purine cycles of AZA. These results indicate that the SPCE modified with the PANI-ES functionalized RGO sheets shows potential applications in the field of sensors for AZA detection.


2018 ◽  
Vol 5 (6) ◽  
pp. 065062 ◽  
Author(s):  
Humera Sabeeh ◽  
Sara Musaddiq ◽  
Muhammad Shahid ◽  
Muhammad Azhar Khan ◽  
Muhammad Sher ◽  
...  

2018 ◽  
Vol 9 ◽  
pp. 591-601 ◽  
Author(s):  
Błażej Scheibe ◽  
Radosław Mrówczyński ◽  
Natalia Michalak ◽  
Karol Załęski ◽  
Michał Matczak ◽  
...  

Reduced graphene oxide–magnetite hybrid aerogels attract great interest thanks to their potential applications, e.g., as magnetic actuators. However, the tendency of magnetite particles to migrate within the matrix and, ultimately, escape from the aerogel structure, remains a technological challenge. In this article we show that coating magnetite particles with polydopamine anchors them on graphene oxide defects, immobilizing the particles in the matrix and, at the same time, improving the aerogel structure. Polydopamine coating does not affect the magnetic properties of magnetite particles, making the fabricated materials promising for industrial applications.


2015 ◽  
Vol 3 (2) ◽  
pp. 832-839 ◽  
Author(s):  
Jie Ding ◽  
Baojun Li ◽  
Yushan Liu ◽  
Xiaoshe Yan ◽  
Sha Zeng ◽  
...  

Fe3O4@reduced graphene oxide composite (FGNC) was synthesised, and for rhodamine B (RhB) and As5+ removal, the excellent behavior of FGNC highlights 3 potential applications in waste water treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Ning Cao ◽  
Yuan Zhang

As a novel two-dimensional carbon material, graphene has fine potential applications in the fields of electron transfer agent and supercapacitor material for its excellent electronic and optical property. However, the challenge is to synthesize graphene in a bulk quantity. In this paper, graphite oxide was prepared from natural flake graphite by Hummers’ method through liquid oxidization, and the reduced graphene oxide was obtained by chemical reduction of graphene oxide using NH3·H2O aqueous solution and hydrazine hydrate. The raw material graphite, graphite oxide, and reduced graphene oxide were characterized by X-ray diffraction (XRD), attenuated total reflectance-infrared spectroscopy (ATR-IR), and field emission scanning electron microscope (SEM). The results indicated that the distance spacing of graphite oxide was longer than that of graphite and the crystal structure of graphite was changed. The flake graphite was oxidized to graphite oxide and lots of oxygen-containing groups were found in the graphite oxide. In the morphologies of samples, fold structure was found on both the surface and the edge of reduced graphene oxide.


Sign in / Sign up

Export Citation Format

Share Document