scholarly journals Study of Reduced Graphene Oxide Preparation by Hummers’ Method and Related Characterization

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Ning Cao ◽  
Yuan Zhang

As a novel two-dimensional carbon material, graphene has fine potential applications in the fields of electron transfer agent and supercapacitor material for its excellent electronic and optical property. However, the challenge is to synthesize graphene in a bulk quantity. In this paper, graphite oxide was prepared from natural flake graphite by Hummers’ method through liquid oxidization, and the reduced graphene oxide was obtained by chemical reduction of graphene oxide using NH3·H2O aqueous solution and hydrazine hydrate. The raw material graphite, graphite oxide, and reduced graphene oxide were characterized by X-ray diffraction (XRD), attenuated total reflectance-infrared spectroscopy (ATR-IR), and field emission scanning electron microscope (SEM). The results indicated that the distance spacing of graphite oxide was longer than that of graphite and the crystal structure of graphite was changed. The flake graphite was oxidized to graphite oxide and lots of oxygen-containing groups were found in the graphite oxide. In the morphologies of samples, fold structure was found on both the surface and the edge of reduced graphene oxide.

2019 ◽  
Vol 2 (3) ◽  
pp. 601-605
Author(s):  
Kübra Yıldız ◽  
Muhammet Uzun

In this study, graphene oxide (GO) was synthesized from graphite using modified Hummers method. According to other methods known in the literature, modified Hummers method; it is simpler and less costly in terms of process steps. In addition, it is safer and environmentally friendly than the Hummers method. Reduced Graphene Oxide (RGO) was obtained by reduction of graphene oxides (GO) synthesized by modified Hummers method. It is understood from the obtained results that GO is synthesized successfully from graphite powder by modified Hummers method and RGO is obtained successfully by reduction of graphene oxides (GO).


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2519
Author(s):  
Alexander N. Ionov ◽  
Mikhail P. Volkov ◽  
Marianna N. Nikolaeva ◽  
Ruslan Y. Smyslov ◽  
Alexander N. Bugrov

This work presents our study results of the magnetization of multilayer UV-reduced graphene oxide (UV-rGO), polymer matrix (polystyrene), and a conjugated composite based on them. The mesoscopic structure of the composites synthesized in this work was studied by such methods as X-ray diffraction, SEM, as well as NMR-, IR- and Raman spectroscopy. The magnetization of the composites under investigation and their components was measured using a vibrating-sample magnetometer. It has been shown that the UV-reduction process leads to the formation of many submicron holes distributed inside rGO flakes, which can create edge defects, causing possibly magnetic order in the graphite samples under investigation on the mesoscopic level. This article provides an alternative explanation for the ferromagnetic hysteresis loop in UV-rGO on the base of superconductivity type-II.


2013 ◽  
Vol 678 ◽  
pp. 56-60 ◽  
Author(s):  
Cherukutty Ramakrishnan Minitha ◽  
Ramasamy Thangavelu Rajendrakumar

Reduced graphene oxide is an excellent candidate for various electronic devices such as high performance gas sensors. In this work Graphene oxide was prepared by oxidizing graphite to form graphite oxide. From XRD analysis the peak around 11.5o confirmed that the oxygen was intercalated into graphite. By using hydrazine hydrate, the epoxy group in graphite oxide was reduced then the solution of reduced graphite oxide (rGO) is exfoliated. Raman spectrum of rGO contains both G band (1580 cm-1), D band (1350 cm-1). The remarkable structural changes reveals that reduction of graphene oxide from the values of ID/IG ratio that increase from 0.727 (GO) to 1.414 (rGO). The exfoliated reduced graphite oxide solution is spin coated on to the SiO2/Si substrates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandra Siklitskaya ◽  
Ewelina Gacka ◽  
Daria Larowska ◽  
Marta Mazurkiewicz-Pawlicka ◽  
Artur Malolepszy ◽  
...  

AbstractGraphene-based nanohybrids are good candidates for various applications. However, graphene exhibits some unwanted features such as low solubility in an aqueous solution or tendency to aggregate, limiting its potential applications. On the contrary, its derivatives, such as graphene oxide (GO) and reduced graphene oxide (RGO), have excellent properties and can be easily produced in large quantities. GO/RGO nanohybrids with porphyrins were shown to possess great potential in the field of photocatalytic hydrogen production, pollutant photodegradation, optical sensing, or drug delivery. Despite the rapid progress in experimental research on the porphyrin-graphene hybrids some fundamental questions about the structures and the interaction between components in these systems still remain open. In this work, we combine detailed experimental and theoretical studies to investigate the nature of the interaction between the GO/RGO and two metal-free porphyrins 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) and 5,10,15,20-tetrakis(4-hydroxyphenyl) porphyrin (TPPH)]. The two porphyrins form stable nanohybrids with GO/RGO support, although both porphyrins exhibited a slightly higher affinity to RGO. We validated finite, Lerf–Klinowski-type (Lerf et al. in J Phys Chem B 102:4477, 1998) structural models of GO ($$\hbox {C}_{59}\hbox {O}_{26}\hbox {H}_{26}$$ C 59 O 26 H 26 ) and RGO ($$\hbox {C}_{59}\hbox {O}_{17}\hbox {H}_{26}$$ C 59 O 17 H 26 ) and successfully used them in ab initio absorption spectra simulations to track back the origin of experimentally observed spectral features. We also investigated the nature of low-lying excited states with high-level wavefunction-based methods and shown that states’ density becomes denser upon nanohybrid formation. The studied nanohybrids are non-emissive, and our study suggests that this is due to excited states that gain significant charge-transfer character. The presented efficient simulation protocol may ease the properties screening of new GO/RGO-nanohybrids.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 594 ◽  
Author(s):  
Mara Serrapede ◽  
Marco Fontana ◽  
Arnaud Gigot ◽  
Marco Armandi ◽  
Glenda Biasotto ◽  
...  

A simple, low cost, and “green” method of hydrothermal synthesis, based on the addition of l-ascorbic acid (l-AA) as a reducing agent, is presented in order to obtain reduced graphene oxide (rGO) and hybrid rGO-MoO2 aerogels for the fabrication of supercapacitors. The resulting high degree of chemical reduction of graphene oxide (GO), confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis, is shown to produce a better electrical double layer (EDL) capacitance, as shown by cyclic voltammetric (CV) measurements. Moreover, a good reduction yield of the carbonaceous 3D-scaffold seems to be achievable even when the precursor of molybdenum oxide is added to the pristine slurry in order to get the hybrid rGO-MoO2 compound. The pseudocapacitance contribution from the resulting embedded MoO2 microstructures, was then studied by means of CV and electrochemical impedance spectroscopy (EIS). The oxidation state of the molybdenum in the MoO2 particles embedded in the rGO aerogel was deeply studied by means of XPS analysis and valuable information on the electrochemical behavior, according to the involved redox reactions, was obtained. Finally, the increased stability of the aerogels prepared with l-AA, after charge-discharge cycling, was demonstrated and confirmed by means of Field Emission Scanning Electron Microscopy (FESEM) characterization.


2021 ◽  
pp. 004051752199547
Author(s):  
Min Hou ◽  
Xinghua Hong ◽  
Yanjun Tang ◽  
Zimin Jin ◽  
Chengyan Zhu ◽  
...  

Functionalized knitted fabric, as a kind of flexible, wearable, and waterproof material capable of conductivity, sensitivity and outstanding hydrophobicity, is valuable for multi-field applications. Herein, the reduced graphene oxide (RGO)-coated knitted fabric (polyester/spandex blended) is prepared, which involves the use of graphite oxide (GO) by modified Hummers method and in-situ chemical reduction with hydrazine hydrate. The treated fabric exhibits a high electrical conductivity (202.09 S/cm) and an outstanding hydrophobicity (140°). The outstanding hydrophobicity is associated with the morphology of the fabric and fiber with reference to pseudo-infiltration. These properties can withstand repeated bending and washing without serious deterioration, maintaining good electrical conductivity (35.70 S/cm) and contact angle (119.39°) after eight standard washing cycles. The material, which has RGO architecture and continuous loop mesh structure, can find wide use in smart garment applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (20) ◽  
pp. 15070-15076 ◽  
Author(s):  
Linxiang He ◽  
Sie Chin Tjong

Nano silver-decorated reduced graphene oxide (Ag–RGO) sheets were synthesized by simply dissolving graphite oxide and silver nitrate inN,N-dimethylformamide and keeping the suspension at 90 °C for 12 h.


2021 ◽  
Author(s):  
Dharshini Mohanadas ◽  
Muhammad Amirul Aizat Mohd Abdah ◽  
Nur Hawa Nabilah Azman ◽  
Thahira B.S.A. Ravoof ◽  
Yusran Sulaiman

Abstract A novel poly(3,4-ethylenedioxythiophene)-reduced graphene oxide/copper-based metal-organic framework (PrGO/HKUST-1) has been successfully fabricated by incorporating electrochemically synthesized poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (PrGO) and hydrothermally synthesized copper-based metal-organic framework (HKUST-1). The field emission scanning microscopy (FESEM) and elemental mapping analysis revealed an even distribution of poly(3,4-ethylenedioxythiophene) (PEDOT), reduced graphene oxide (rGO) and HKUST-1. The crystalline structure and vibration modes of PrGO/HKUST-1 was validated utilizing X-ray diffraction (XRD) as well as Raman spectroscopy, respectively. A remarkable specific capacitance (360.5 F/g) was obtained for PrGO/HKUST-1 compared to HKUST-1 (103.1 F/g), PrGO (98.5 F/g) and PEDOT (50.8 F/g) using KCl/PVA as a gel electrolyte. Moreover, PrGO/HKUST-1 composite with the longest charge/discharge time displayed excellent specific energy (21.0 Wh/kg), specific power (479.7 W/kg) and outstanding cycle life (95.5%) over 4000 cycles. Thus, the PrGO/HKUST-1 can be recognized as a promising energy storage material.


Sign in / Sign up

Export Citation Format

Share Document