scholarly journals Transcriptomes in peripheral blood of young females with temporomandibular joint osteoarthritis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeong-Hyun Kang

AbstractThis study aimed to investigate immune-related pathophysiology of the temporomandibular joint (TMJ) osteoarthritis (OA) in young females by analyzing transcriptional profiles of peripheral blood mononuclear cells. The RNA-sequencing (RNA-seq) was conducted on 24 young females with TMJ OA (mean age 19.3 ± 3.1 years) (RNAOA) and 11 age and sex matched healthy controls (mean age 20.5 ± 3.7 years) (CON). RNA-seq datasets were analyzed to identify genes, pathways, and regulatory networks of those which were involved in the development of TMJ OA. RNA-seq data analysis revealed 41 differentially expressed genes (DEGs) between RNAOA and CON. A total of 16 gene ontology (GO) terms including three molecular and 13 biological terms were annotated via the GO function of molecular function and biological process. Through ingenuity pathway analysis (IPA), 21 annotated categories of diseases and functions were identified. There were six hub genes which showed significant results in both GO enrichment analysis and IPA, namely HLA-C, HLA-F, CXCL8, IL11RA, IL13RA1, and FCGR3B. The young females with TMJ OA showed alterations of the genes related to immune function in the blood and some of changes may reflect inflammation, autoimmunity, and abnormal T cell functions.

2020 ◽  
Author(s):  
Jeong Hyun Kang

Abstract BackgroundEarly onset of the disease and female preponderance are the unique features of the temporomandibular joint (TMJ) osteoarthritis (OA). The immune modulation mechanisms related to etiology of OA from other joints such as knee or hip have been suggested, but the immune-associated pathophysiology of TMJ OA, especially in young females, has not been elucidated. The present study aimed to investigate the immune-related pathophysiology of TMJ OA by analyzing transcriptional profiles of peripheral blood mononuclear cells which identify the differentially expressed genes (DEGs) in young females with TMJ OA. MethodsRNA-sequencing (RNA-seq) was conducted on 24 young females with TMJ OA (mean age 19.3 ± 3.1 years) (RNAOA) and 11 age and sex matched healthy control (mean age 20.5 ± 3.7 years) (CON). RNA-seq datasets were analyzed to identify genes, pathways, and regulatory networks of those who were involved in the development of TMJ OA. ResultsRNA-seq data analysis revealed 41 DEGs between RNAOA and CON. A total of 16 gene ontology (GO) terms including 3 molecular and 13 biological terms were annotated via the GO function of molecular function and biological process. Through ingenuity pathway analysis (IPA), 21 annotated categories of diseases and functions were identified. There were six hub genes which showed significant results in both GO enrichment analysis and IPA, namely HLA-C, HLA-F, CXCL8, IL11RA, IL13RA1, and FCGR3B. ConclusionsThe young females with TMJ OA showed alterations of the gene related to immune function in the blood and some of the changes may reflect inflammation, auto-reactivity, and altered T cell functions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel J. B. Clarke ◽  
Alison W. Rebman ◽  
Allison Bailey ◽  
Megan L. Wojciechowicz ◽  
Sherry L. Jenkins ◽  
...  

Although widely prevalent, Lyme disease is still under-diagnosed and misunderstood. Here we followed 73 acute Lyme disease patients and uninfected controls over a period of a year. At each visit, RNA-sequencing was applied to profile patients' peripheral blood mononuclear cells in addition to extensive clinical phenotyping. Based on the projection of the RNA-seq data into lower dimensions, we observe that the cases are separated from controls, and almost all cases never return to cluster with the controls over time. Enrichment analysis of the differentially expressed genes between clusters identifies up-regulation of immune response genes. This observation is also supported by deconvolution analysis to identify the changes in cell type composition due to Lyme disease infection. Importantly, we developed several machine learning classifiers that attempt to perform various Lyme disease classifications. We show that Lyme patients can be distinguished from the controls as well as from COVID-19 patients, but classification was not successful in distinguishing those patients with early Lyme disease cases that would advance to develop post-treatment persistent symptoms.


2020 ◽  
Vol 94 (19) ◽  
Author(s):  
Maria Paola Pisano ◽  
Olivier Tabone ◽  
Maxime Bodinier ◽  
Nicole Grandi ◽  
Julien Textoris ◽  
...  

ABSTRACT Human endogenous retroviruses (HERVs) and mammalian apparent long terminal repeat (LTR) retrotransposons (MaLRs) are retroviral sequences that integrated into germ line cells millions of years ago. Transcripts of these LTR retrotransposons are present in several tissues, and their expression is modulated in pathological conditions, although their function remains often far from being understood. Here, we focused on the HERV/MaLR expression and modulation in a scenario of immune system activation. We used a public data set of human peripheral blood mononuclear cells (PBMCs) RNA-Seq from 15 healthy participants to a clinical trial before and after exposure to lipopolysaccharide (LPS), for which we established an RNA-Seq workflow for the identification of expressed and modulated cellular genes and LTR retrotransposon elements. IMPORTANCE We described the HERV and MaLR transcriptome in PBMCs, finding that about 8.4% of the LTR retrotransposon loci were expressed and identifying the betaretrovirus-like HERVs as those with the highest percentage of expressed loci. We found 4,607 HERV and MaLR loci that were modulated as a result of in vivo stimulation with LPS. The HERV-H group showed the highest number of differentially expressed most intact proviruses. We characterized the HERV and MaLR loci as differentially expressed, checking their genomic context of insertion and observing a general colocalization with genes that are involved and modulated in the immune response, as a consequence of LPS stimulation. The analyses of HERV and MaLR expression and modulation show that these LTR retrotransposons are expressed in PBMCs and regulated in inflammatory settings. The similar regulation of HERVs/MaLRs and genes after LPS stimulation suggests possible interactions of LTR retrotransposons and the immune host response.


2019 ◽  
Author(s):  
Maria Paola Pisano ◽  
Olivier Tabone ◽  
Maxime Bodinier ◽  
Nicole Grandi ◽  
Julien Textoris ◽  
...  

AbstractHuman Endogenous Retroviruses (HERVs) and Mammalian apparent LTR-retrotransposons (MaLRs) are retroviral sequences that integrated into the germline cells millions year ago. Transcripts of these LTR-retrotransposons are present in several tissues, and their expression is modulated in pathological conditions, although their function remains often far from being understood. In this work, we focused on the HERVs/MaLRs expression and modulation in a scenario of immune system activation. We used a public dataset of Human Peripheral Blood Mononuclear Cells (PBMCs) RNA-seq from 15 healthy participants to a clinical trial before and after the exposure to Lipopolysaccharide (LPS), for which we established an RNA-seq workflow for the identification of expressed and modulated cellular genes and LTR-retrotransposon elements.ImportanceWe described the HERV and MaLR transcriptome in PBMCs, finding that about 8.4 % of the LTR-retrotransposons loci were expressed, and identifying the betaretrovirus-like HERVs as those with the highest percentage of expressed loci. We found 4,607 HERVs and MaLRs loci that were modulated as a result of in vivo stimulation with LPS. The HERV-H group showed the highest number of differentially expressed most intact proviruses. We characterized the HERV and MaLR loci differentially expressed checking their genomic context of insertion and, interestingly, we found a general co-localization with genes that are involved and modulated in the immune response, as consequence of LPS stimulation. The analyses of HERVs and MaLRs expression and modulation show that this LTR-retrotransposons are expressed in PBMCs and regulated in inflammatory settings. The similar regulation of HERVs/MaLRs and genes after LPS stimulation suggests possible interactions of LTR-retrotransposons and the immune host response.


2019 ◽  
Author(s):  
Eladio J. Márquez ◽  
Cheng-han Chung ◽  
Radu Marches ◽  
Robert J. Rossi ◽  
Djamel Nehar-Belaid ◽  
...  

AbstractDifferences in immune function and responses contribute to health- and life-span disparities between sexes. However, the role of sex in immune system aging is not well understood. Here, we characterize peripheral blood mononuclear cells from 172 healthy adults 22-93 years of age using ATAC-seq, RNA-seq, and flow-cytometry. These data reveal a shared epigenomic signature of aging including declining naïve T cell and increasing monocyte/cytotoxic cell functions. These changes were greater in magnitude in men and accompanied by a male-specific genomic decline in B-cell specific loci. Age-related epigenomic changes first spike around late-thirties with similar timing and magnitude between sexes, whereas the second spike is earlier and stronger in men. Unexpectedly, genomic differences between sexes increase after age 65, with men having higher innate and pro-inflammatory activity and lower adaptive activity. Impact of age and sex on immune cell genomes can be visualized at https://immune-aging.jax.org to provide insights into future studies.


Sign in / Sign up

Export Citation Format

Share Document