scholarly journals Predicting Lyme Disease From Patients' Peripheral Blood Mononuclear Cells Profiled With RNA-Sequencing

2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel J. B. Clarke ◽  
Alison W. Rebman ◽  
Allison Bailey ◽  
Megan L. Wojciechowicz ◽  
Sherry L. Jenkins ◽  
...  

Although widely prevalent, Lyme disease is still under-diagnosed and misunderstood. Here we followed 73 acute Lyme disease patients and uninfected controls over a period of a year. At each visit, RNA-sequencing was applied to profile patients' peripheral blood mononuclear cells in addition to extensive clinical phenotyping. Based on the projection of the RNA-seq data into lower dimensions, we observe that the cases are separated from controls, and almost all cases never return to cluster with the controls over time. Enrichment analysis of the differentially expressed genes between clusters identifies up-regulation of immune response genes. This observation is also supported by deconvolution analysis to identify the changes in cell type composition due to Lyme disease infection. Importantly, we developed several machine learning classifiers that attempt to perform various Lyme disease classifications. We show that Lyme patients can be distinguished from the controls as well as from COVID-19 patients, but classification was not successful in distinguishing those patients with early Lyme disease cases that would advance to develop post-treatment persistent symptoms.

2019 ◽  
Vol 143 (6) ◽  
pp. 2334 ◽  
Author(s):  
Gen Lu ◽  
Jian-Hua Ren ◽  
Bo Hu ◽  
Chun-Hui He ◽  
Pei-Qiong Wu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Olivier Dionne ◽  
François Corbin

AbstractFragile X syndrome (FXS) is the most prevalent inherited cause of intellectual disabilities and autism spectrum disorders. FXS result from the loss of expression of the FMRP protein, an RNA-binding protein that regulates the expression of key synaptic effectors. FXS is also characterized by a wide array of behavioural, cognitive and metabolic impairments. The severity and penetrance of those comorbidities are extremely variable, meaning that a considerable phenotypic heterogeneity is found among fragile X individuals. Unfortunately, clinicians currently have no tools at their disposal to assay a patient prognosis upon diagnosis. Since the absence of FMRP was repeatedly associated with an aberrant protein synthesis, we decided to study the nascent proteome in order to screen for potential proteomic biomarkers of FXS. We used a BONCAT (Biorthogonal Non-canonical Amino Acids Tagging) method coupled to label-free mass spectrometry to purify and quantify nascent proteins of peripheral blood mononuclear cells (PBMCs) from 7 fragile X male patients and 7 age-matched controls. The proteomic analysis identified several proteins which were either up or downregulated in PBMCs from FXS individuals. Eleven of those proteins were considered as potential biomarkers, of which 5 were further validated by Western blot. The gene ontology enrichment analysis highlighted molecular pathways that may contribute to FXS physiopathology. Our results suggest that the nascent proteome of PBMCs is well suited for the discovery of FXS biomarkers.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Dan Huang ◽  
Jian Liu ◽  
Yunxiang Cao ◽  
Lei Wan ◽  
Hui Jiang ◽  
...  

Several previous studies have attempted to investigate the regulatory mechanisms underlying gene expression in ankylosing spondylitis (AS). However, the specific molecular pathways underlying this condition remain unclear. Previous research used next-generation RNA sequencing to identify a series of differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) when compared between patients with AS and healthy controls, thus implying that these DEGs may be related to AS. Furthermore, by screening these DEGS, it may be possible to facilitate clinical diagnosis and optimize treatment strategies. In order to test this hypothesis, we recruited 15 patients with AS and 15 healthy controls. We randomly selected five subjects from each group of patients for RNA sequencing analysis. Sequence reads were generated by an Illumina HiSeq2500 platform and mapped on to the human reference genome using HISAT2. We successfully identified 973 significant DEGs (p<0.05) in PBMCs. When compared with controls, 644 of these genes were upregulated (with a fold change FC>2) in AS patients and 329 were downregulated (FC<0.5). Our analysis identified numerous genes related to immune response. Gene Ontology (GO) analysis indicated that these DEGs were significantly related to the positive regulation of epidermal growth factor-activated receptor activity, the positive regulation of the ERBB (erb-b2 receptor tyrosine kinase) signaling pathway, the differentiation of trophoblast giant cells, oxygen transport, immune-related pathways, and inflammation-related pathways. The DEGs were also closely related to the TNF and NF-κB signaling pathways. Six DEGs were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Receiver operating characteristic (ROC) curve analysis indicated that IL6 may represent a useful biomarker for diagnosing AS. The development of new biomarkers may help us to elucidate the specific mechanisms involved in the development and progression of AS.


2020 ◽  
Author(s):  
Christopher S. McGinnis ◽  
David A. Siegel ◽  
Guorui Xie ◽  
Mars Stone ◽  
Zev J. Gartner ◽  
...  

ABSTRACTSingle-cell RNA sequencing (scRNA-seq) provides high-dimensional measurement of transcript counts in individual cells. However, high assay costs limit the study of large numbers of samples. Sample multiplexing technologies such as antibody hashing and MULTI-seq use sample-specific sequence tags to enable individual samples (e.g., different patients) to be sequenced in a pooled format before downstream computational demultiplexing. Critically, no study to date has evaluated whether the mixing of samples from different donors in this manner results in significant changes in gene expression resulting from alloreactivity (i.e., response to non-self immune antigens). The ability to demonstrate minimal to no alloreactivity is crucial to avoid confounded data analyses, particularly for cross-sectional studies evaluating changes in immunologic gene signatures,. Here, we compared the expression profiles of peripheral blood mononuclear cells (PBMCs) from a single donor with and without pooling with PBMCs isolated from other donors with different blood types. We find that there was no evidence of alloreactivity in the multiplexed samples following three distinct multiplexing workflows (antibody hashing, MULTI-seq, and in silico genotyping using souporcell). Moreover, we identified biases amongst antibody hashing sample classification results in this particular experimental system, as well as gene expression signatures linked to PBMC preparation method (e.g., Ficoll-Paque density gradient centrifugation with or without apheresis using Trima filtration).


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaqi Zhang ◽  
Dongzi Lin ◽  
Kui Li ◽  
Xiangming Ding ◽  
Lin Li ◽  
...  

The existence of asymptomatic and re-detectable positive coronavirus disease 2019 (COVID-19) patients presents the disease control challenges of COVID-19. Most studies on immune responses in COVID-19 have focused on moderately or severely symptomatic patients; however, little is known about the immune response in asymptomatic and re-detectable positive (RP) patients. Here we performed a comprehensive analysis of the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from 48 COVID-19 patients which included 8 asymptomatic, 13 symptomatic, 15 recovered and 12 RP patients. The weighted gene co-expression network analysis (WGCNA) identified six co-expression modules, of which the turquoise module was positively correlated with the asymptomatic, symptomatic, and recovered COVID-19 patients. The red module positively correlated with symptomatic patients only and the blue and brown modules positively correlated with the RP patients. The analysis by single sample gene set enrichment analysis (ssGSEA) revealed a lower level of IFN response and complement activation in the asymptomatic patients compared with the symptomatic, indicating a weaker immune response of the PBMCs in the asymptomatic patients. In addition, gene set enrichment analysis (GSEA) analysis showed the enrichment of TNFα/NF-κB and influenza infection in the RP patients compared with the recovered patients, indicating a hyper-inflammatory immune response in the PBMC of RP patients. Thus our findings could extend our understanding of host immune response during the progression of COVID-19 disease and assist clinical management and the immunotherapy development for COVID-19.


Sign in / Sign up

Export Citation Format

Share Document