scholarly journals Super-resolution imaging of platelet-activation process and its quantitative analysis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinkyoung Chung ◽  
Dokyung Jeong ◽  
Geun-ho Kim ◽  
Seokran Go ◽  
Jaewoo Song ◽  
...  

AbstractUnderstanding the platelet activation molecular pathways by characterizing specific protein clusters within platelets is essential to identify the platelet activation state and improve the existing therapies for hemostatic disorders. Here, we employed various state-of-the-art super-resolution imaging and quantification methods to characterize the platelet spatiotemporal ultrastructural change during the activation process due to phorbol 12-myristate 13-acetate (PMA) stimuli by observing the cytoskeletal elements and various organelles at nanoscale, which cannot be done using conventional microscopy. Platelets could be spread out with the guidance of actin and microtubules, and most organelles were centralized probably due to the limited space of the peripheral thin regions or the close association with the open canalicular system (OCS). Among the centralized organelles, we provided evidence that granules are fused with the OCS to release their cargo through enlarged OCS. These findings highlight the concerted ultrastructural reorganization and relative arrangements of various organelles upon activation and call for a reassessment of previously unresolved complex and multi-factorial activation processes.

Nanoscale ◽  
2019 ◽  
Vol 11 (20) ◽  
pp. 10023-10033 ◽  
Author(s):  
Jan Bergstrand ◽  
Lei Xu ◽  
Xinyan Miao ◽  
Nailin Li ◽  
Ozan Öktem ◽  
...  

Super-resolution imaging of P-selectin in platelets together with dictionary learning allow specifically activated platelets to be identified in an automatic objective manner.


Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 307
Author(s):  
Xiaoxiao Jiang ◽  
Lu Kong ◽  
Yu Ying ◽  
Qiongchan Gu ◽  
Jiangtao Lv ◽  
...  

Super-resolution optical imaging is a consistent research hotspot for promoting studies in nanotechnology and biotechnology due to its capability of overcoming the diffraction limit, which is an intrinsic obstacle in pursuing higher resolution for conventional microscopy techniques. In the past few decades, a great number of techniques in this research domain have been theoretically proposed and experimentally demonstrated. Graphene, a special two-dimensional material, has become the most meritorious candidate and attracted incredible attention in high-resolution imaging domain due to its distinctive properties. In this article, the working principle of graphene-assisted imaging devices is summarized, and recent advances of super-resolution optical imaging based on graphene are reviewed for both near-field and far-field applications.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liwen Chen ◽  
Longfang Yao ◽  
Li Zhang ◽  
Yiyan Fei ◽  
Lan Mi ◽  
...  

Super-resolution microscopy includes multiple techniques in optical microscopy that enable sub-diffraction resolution fluorescence imaging of cellular structures. Expansion microscopy (EXM) is a method of physical expansion to obtain super-resolution images of a biological sample on conventional microscopy. We present images of yeast organelles, applying the combination of super-resolution and ExM techniques. When preparing pre-expanded samples, conventional methods lead to breakage of dividing yeast cells and difficulties in studying division-related proteins. Here, we describe an improved sample preparation technique that avoids such damage. ExM in combination with Airyscan and structured illumination microscopy (SIM) collected sub-cellular structural images of nuclear pore complex, septin, and a-tubulin in yeast. Our method of expansion in yeast is well-suited for super-resolution imaging study of yeast.


2021 ◽  
Author(s):  
Charlotte Rimbault ◽  
Christelle Breillat ◽  
Benjamin Compans ◽  
Estelle Toulmé ◽  
Filipe Nunes Vicente ◽  
...  

Despite the constant advances in fluorescence imaging techniques, monitoring endogenous proteins still constitutes a major challenge in particular when considering dynamics studies or super-resolution imaging. We have recently evolved specific protein-based binders for PSD-95, the main postsynaptic scaffold proteins at excitatory synapses. Since the synthetic binders recognize epitopes not directly involved in the target protein activity, we consider them here as tools to develop endogenous PSD-95 imaging probes. After confirming their lack of impact on PSD-95 function, we validated their use as intrabody fluorescent probes. We further engineered the probes and demonstrated their usefulness in different super-resolution imaging modalities (STED, PALM and DNA-PAINT) in both live and fixed neurons. Finally, we exploited the binders to enrich at the synapse genetically encoded calcium reporters. Overall, we demonstrate that these evolved binders constitute a robust and efficient platform to selectively target and monitor endogenous PSD-95 using various fluorescence imaging techniques.


2017 ◽  
Vol 8 (1) ◽  
pp. 559-566 ◽  
Author(s):  
Sebastian Hauke ◽  
Alexander von Appen ◽  
Tooba Quidwai ◽  
Jonas Ries ◽  
Richard Wombacher

We present new fluorophore-conjugates for dual-color photoactivation and super-resolution imaging inside live mammalian cells.


2020 ◽  
Vol 6 (16) ◽  
pp. eaay7193 ◽  
Author(s):  
Sana Siddig ◽  
Sarah Aufmkolk ◽  
Sören Doose ◽  
Marie-Lise Jobin ◽  
Christian Werner ◽  
...  

G protein–coupled receptors (GPCRs) play a fundamental role in the modulation of synaptic transmission. A pivotal example is provided by the metabotropic glutamate receptor type 4 (mGluR4), which inhibits glutamate release at presynaptic active zones (AZs). However, how GPCRs are organized within AZs to regulate neurotransmission remains largely unknown. Here, we applied two-color super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) to investigate the nanoscale organization of mGluR4 at parallel fiber AZs in the mouse cerebellum. We find an inhomogeneous distribution, with multiple nanodomains inside AZs, each containing, on average, one to two mGluR4 subunits. Within these nanodomains, mGluR4s are often localized in close proximity to voltage-dependent CaV2.1 channels and Munc-18-1, which are both essential for neurotransmitter release. These findings provide previously unknown insights into the molecular organization of GPCRs at AZs, suggesting a likely implication of a close association between mGluR4 and the secretory machinery in modulating synaptic transmission.


Sign in / Sign up

Export Citation Format

Share Document