scholarly journals The mathematical expression of damage law of museum lighting on dyed artworks

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rui Dang ◽  
Baoping Wang ◽  
Xiangyang Song ◽  
Fenghui Zhang ◽  
Gang Liu

AbstractDyed artworks are highly sensitive to light and are easily affected by museum lighting, resulting in irreversible permanent color damage such as fading and discoloration. Exposure, light source spectrum and material properties are the three indicators causing damage to artworks. Therefore, it is the basis for effective lighting protection to reveal the quantitative influence of exposure and light source spectrum composition on the damage degree of different pigments and establish a mathematical model that can accurately express the above rules. At present, the color damage calculation model of dyed artworks under three parameters’ coupling action is missing. This research established a visual three-dimensional change surface of the color difference values of 23 pigments varying with the spectral wavelength and exposure through experimental methods. The relative responsivity function ΔEn = fn(λ, Q), where n = 1 ~ 23, was obtained for 23 pigments under the coupling effects of exposure and light source spectra. Furthermore, a mathematical model $$D_{n} = \mathop \smallint \limits_{380}^{780} S\left( \lambda \right) \cdot f_{n} \left( {\lambda ,Q} \right)d\lambda$$ D n = ∫ 380 780 S λ · f n λ , Q d λ calculating the color damage of pigments in the range of visible light was proposed. The proposed model was verified by the experimental method, which realizes the mathematical expression of the damage law of museum lighting on dyed artworks.

2018 ◽  
Vol 17 (4) ◽  
pp. 292-296
Author(s):  
P. M. Bohaslauchyk

Water flow over soil dam crest causes its fast failure. Break-through wave being formed in dam ebb side leads to drastic economic and social consequences. Accuracy in calculation of the break-through wave parameters depends on the accuracy of discharge hydrograph construction in the dam erosion site. A calculation scheme for soil dam wash-away due to overflow has been devised on the basis of the experimental data. Wash-away process is divided in two stages in accordance with the devised scheme. Wash-away of the downstream toe occurs at the first stage. The crest level from the side of upstream edge remains constant. Intensive crest lowering is observed at the second stage. The eroding body is considered to have a shape of a round-crested weir. In such a case the washed-away massif has a form of nappe-shaped crest profile. A mathematical model has been developed on the basis of this scheme and according to this model equations of deformation and flow motion are considered simultaneously. The model is consistent in a good way with physical erosion pattern during fast flood rise and when the erosion width is known; the model is recommended for calculation of breaching sections in reserve water outlets. In general case and when the width is unlimited (three-dimensional problem) calculation formulae have one more unknown variable that is flow width within the erosion site. The paper describes peculiar features in physiccal erosion pattern for such case and a number of the known formulae for determination of the erosion have been given and analyzed in the paper. The equation which fits in a good way in the proposed mathematical model has been chosen, and it provides the possibility to adapt the model for three-dimensional erosion conditions. Calculations made in accordance with the proposed methodology make it possible to construct discharge hydrograph in the dam erosion site.


1991 ◽  
Vol 24 (6) ◽  
pp. 171-177 ◽  
Author(s):  
Zeng Fantang ◽  
Xu Zhencheng ◽  
Chen Xiancheng

A real-time mathematical model for three-dimensional tidal flow and water quality is presented in this paper. A control-volume-based difference method and a “power interpolation distribution” advocated by Patankar (1984) have been employed, and a concept of “separating the top-layer water” has been developed to solve the movable boundary problem. The model is unconditionally stable and convergent. Practical application of the model is illustrated by an example for the Pearl River Estuary.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 215-223
Author(s):  
Hao Huang ◽  
Qiao Deng ◽  
Hui Zhang

Abstract The packer is one of the most important tools in deep-water perforation combined well testing, and its safety directly determines the success of perforation test operations. The study of dynamic perforating pressure on the packer is one of the key technical problems in the production of deep-water wells. However, there are few studies on the safety of packers with shock loads. In this article, the three-dimensional finite element models of downhole perforation have been established, and a series of numerical simulations are carried out by using orthogonal design. The relationship between the perforating peak pressure on the packer with the factors such as perforating charge quantity, wellbore pressure, perforating explosion volume, formation pressure, and elastic modulus is established. Meanwhile, the database is established based on the results of numerical simulation, and the calculation model of peak pressure on the packer during perforating is obtained by considering the reflection and transmission of shock waves on the packer. The results of this study have been applied in the field case of deep-water well, and the safety optimization program for deep-water downhole perforation safety has been put forward. This study provides important theoretical guidance for the safety of the packer during deep-water perforating.


2021 ◽  
Vol 40 (4) ◽  
pp. 8493-8500
Author(s):  
Yanwei Du ◽  
Feng Chen ◽  
Xiaoyi Fan ◽  
Lei Zhang ◽  
Henggang Liang

With the increase of the number of loaded goods, the number of optional loading schemes will increase exponentially. It is a long time and low efficiency to determine the loading scheme with experience. Genetic algorithm is a search heuristic algorithm used to solve optimization in the field of computer science artificial intelligence. Genetic algorithm can effectively select the optimal loading scheme but unable to utilize weight and volume capacity of cargo and truck. In this paper, we propose hybrid Genetic and fuzzy logic based cargo-loading decision making model that focus on achieving maximum profit with maximum utilization of weight and volume capacity of cargo and truck. In this paper, first of all, the components of the problem of goods stowage in the distribution center are analyzed systematically, which lays the foundation for the reasonable classification of the problem of goods stowage and the establishment of the mathematical model of the problem of goods stowage. Secondly, the paper abstracts and defines the problem of goods loading in distribution center, establishes the mathematical model for the optimization of single car three-dimensional goods loading, and designs the genetic algorithm for solving the model. Finally, Matlab is used to solve the optimization model of cargo loading, and the good performance of the algorithm is verified by an example. From the performance evaluation analysis, proposed the hybrid system achieve better outcomes than the standard SA model, GA method, and TS strategy.


2013 ◽  
Vol 791-793 ◽  
pp. 1073-1076
Author(s):  
Ming Yang ◽  
Shi Ping Zhao ◽  
Han Ping Wang ◽  
Lin Peng Wang ◽  
Shao Zhu Wang

The unsteady hydrodynamic accurate calculation is the premise of submerged body trajectory design and maneuverability design. Calculation model of submerged body unsteady hydrodynamic with the movement in the longitudinal plane was established, which based on unsteady three-dimensional incompressible fluid dynamics theory. Variable speed translational and variable angular velocity of the pitching motion in the longitudinal plane of submerged body was achieved by dynamic mesh method. The unsteady hydrodynamic could be obtained by model under the premise of good quality grid by the results. Modeling methods can learn from other similar problems, which has engineering application value.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Andrew Chalmers ◽  
Snjezana Soltic

This paper is concerned with designing light source spectra for optimum luminous efficacy and colour rendering. We demonstrate that it is possible to design light sources that can provide both good colour rendering and high luminous efficacy by combining the outputs of a number of narrowband spectral constituents. Also, the achievable results depend on the numbers and wavelengths of the different spectral bands utilized in the mixture. Practical realization of these concepts has been demonstrated in this pilot study which combines a number of simulations with tests using real LEDs (light emitting diodes). Such sources are capable of providing highly efficient lighting systems with good energy conservation potential. Further research is underway to investigate the practicalities of our proposals in relation to large-scale light source production.


2012 ◽  
Vol 246-247 ◽  
pp. 1220-1225
Author(s):  
You Kun Zhong

With the increasing of the number of cars, people are also getting higher and higher demands on the performance of the car, and especially pay attention to the improvement and optimization of automobile transmission system. The transmission is a key part of automobile transmission system, and transmission performance and stability depend on the synchronous machine, so in order to make the vehicle transmission system with higher efficiency, it is necessary to study the synchronous machine. On the basis of elaborating synchronous machine working principle, the use of dynamics theory to establish mathematical model of synchronous machine system, and to carry out the simulation of synchronous machine three-dimensional model in PRO/E environment, then the use of virtual prototype technology to optimize the parameters of synchronous machine, thereby improving the performance of synchronous machine.


Sign in / Sign up

Export Citation Format

Share Document