scholarly journals Global climate shift in 1970s causes a significant worldwide increase in precipitation extremes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Subharthi Sarkar ◽  
Rajib Maity

AbstractThe shift in climate regimes around 1970s caused an overall enhancement of precipitation extremes across the globe with a specific spatial distribution pattern. We used gridded observational-reanalysis precipitation dataset and two important extreme precipitation measures, namely Annual Maximum Daily Precipitation (AMDP) and Probable Maximum Precipitation (PMP). AMDP is reported to increase for almost two-third of the global land area. The variability of AMDP is found to increase more than its mean that eventually results in increased PMP almost worldwide, less near equator and maximum around mid-latitudes. Continent-wise, such increase in AMDP and PMP is true for all continents except some parts of Africa. The zone-wise analysis (dividing the globe into nine precipitation zones) reveals that zones of ‘moderate precipitation’ and ‘moderate seasonality’ exhibit the maximum increases in PMP. Recent increased in pole-ward heat and moisture transport as a result of Arctic Amplification may be associated with such spatial redistribution of precipitation extremes in the northern hemisphere.

2021 ◽  
Author(s):  
Amal John ◽  
Hervé Douville ◽  
Pascal Yiou

<p>Daily precipitation extremes are projected to intensify with global warming. Here the focus is on how extreme precipitation scales with the changing global mean surface air temperature (GSAT) and how much their inherent seasonality will change, using historical and SSP5-8.5 scenario simulations from 18 CMIP6 models for different sub-domains over Europe. With strong future global warming, the annual maximum precipitation (RX1DAY) is found to occur later in the year, although this shift is model-dependent and hardly significant in the multi-model distribution. Using generalized extreme value theory also provides evidence for the intensification of wet extremes in the future. In addition, we use monthly model outputs to decompose changes in RX1DAY occurring at the peak of the extreme season into several contributions, which gives insights into the underlying physical mechanisms that control the response of precipitation extremes and their inter-model spread.</p>


2019 ◽  
Author(s):  
Rémy Roca ◽  
Lisa V. Alexander ◽  
Gerald Potter ◽  
Margot Bador ◽  
Rômulo Jucá ◽  
...  

Abstract. We introduce the Frequent Rainfall Observations on GridS (FROGS) database (Roca et al., 2019). It is composed of gridded daily precipitation products on a common 1° × 1° grid to ease intercomparison and assessment exercises. The database includes satellite, ground–based and reanalysis products. As most of the satellite products rely on rain gauges for calibration, unadjusted versions of satellite products are also provided where available. Each product is provided over its length of record and up to 2017 if available. Quasi-global, quasi-global land only, ocean only as well as tropical only and regional products (over continental Africa and South America) are included. All products are provided on a common netCDF format that is compliant with CF and AAC standards. Preliminary investigations of this large ensemble indicate that while a lot of features appear robust across the products, the characterization of precipitation extremes exhibit a large spread calling for careful selection of the products used for scientific applications. All datasets are freely available via an ftp server and identified thanks to the DOI: https://doi.org/10.14768/06337394-73A9-407C-9997-0E380DAC5598.


2021 ◽  
pp. 1-38

Abstract This study investigates future changes in daily precipitation extremes and the involved physics over the global land monsoon (GM) region using climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6). The daily precipitation extreme is identified by the cutoff scale, measuring the extreme tail of the precipitation distribution. Compared to the historical period, multi-model results reveal a continuous increase in precipitation extremes under four scenarios, with a progressively higher fraction of precipitation exceeding the historical cutoff scale when moving into the future. The rise of the cutoff-scale by the end of the century is reduced by 57.8% in the moderate emission scenario relative to the highest scenario, underscoring the social benefit in reducing emissions. The cutoff scale sensitivity, defined by the increasing rates of the cutoff scale over the GM region to the global mean surface temperature increase, is nearly independent of the projected periods and emission scenarios, roughly 8.0% K−1 by averaging all periods and scenarios. To understand the cause of the changes, we applied a physical scaling diagnostic to decompose them into thermodynamic and dynamic contributions. We find that thermodynamics and dynamics have comparable contributions to the intensified precipitation extremes in the GM region. Changes in thermodynamic scaling contribute to a spatially uniform increase pattern, while changes in dynamic scaling dominate the regional differences in the increased precipitation extremes. Furthermore, the large inter-model spread of the projection is primarily attributed to variations of dynamic scaling among models.


2019 ◽  
Vol 11 (3) ◽  
pp. 1017-1035 ◽  
Author(s):  
Rémy Roca ◽  
Lisa V. Alexander ◽  
Gerald Potter ◽  
Margot Bador ◽  
Rômulo Jucá ◽  
...  

Abstract. We introduce the Frequent Rainfall Observations on GridS (FROGS) database (Roca et al., 2019). It is composed of gridded daily-precipitation products on a common 1∘×1∘ grid to ease intercomparison and assessment exercises. The database includes satellite, ground-based and reanalysis products. As most of the satellite products rely on rain gauges for calibration, unadjusted versions of satellite products are also provided where available. Each product is provided over its length of record and up to 2017 if available. Quasi-global, quasi-global land-only, ocean-only and tropical-only as well as regional products (over continental Africa and South America) are included. All products are provided on a common netCDF format that is compliant with Climate and Forecast (CF) Convention and Attribute Convention for Dataset Discovery (ACDD) standards. Preliminary investigations of this large ensemble indicate that while many features appear robust across the products, the characterization of precipitation extremes exhibits a large spread calling for careful selection of the products used for scientific applications. All datasets are freely available via an FTP server and identified thanks to the DOI: https://doi.org/10.14768/06337394-73A9-407C-9997-0E380DAC5598.


2012 ◽  
Vol 49 (6-I) ◽  
pp. 32-43 ◽  
Author(s):  
A. Ozolinsh ◽  
A. Jakovich

Abstract The heat and moisture transport in multi-layer walls is analysed for five building units. Using the developed program, a typical of Latvian conditions temperature and relative humidity profiles in multi-layered constructions has been obtained and the indoor heat losses estimated. Consideration is also given to the risk of condensate formation and to the influence of moisture on the U-value. The created mathematical model allows forecasting the energy efficiency and sustainability of different technical solutions as refer to the heat and moisture transport in buildings.


2012 ◽  
Vol 6 (1) ◽  
pp. 148-159
Author(s):  
Jan Sykora ◽  
Jan Zeman ◽  
Michal Ŝejnoha

The paper reviews several topics associated with the homogenization of transport processed in historical ma-sonry structures. Since these often experience an irregular or random pattern, we open the subject by summarizing essen-tial steps in the formulation of a suitable computational model in the form of Statistically Equivalent Periodic Unit Cell (SEPUC). Accepting SEPUC as a reliable representative volume element is supported by application of the Fast Fourier Transform to both the SEPUC and large binary sample of real masonry in search for effective thermal conductivities lim-ited here to a steady state heat conduction problem. Fully coupled non-stationary heat and moisture transport is addressed next in the framework of two-scale first-order homogenization approach with emphases on the application of boundary and initial conditions on the meso-scale.


Sign in / Sign up

Export Citation Format

Share Document