scholarly journals Fabrication and characterization of resistive double square loop arrays for ultra-wide bandwidth microwave absorption

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-Young Jeong ◽  
Je-Ryung Lee ◽  
Hyeonjin Park ◽  
Joonkyo Jung ◽  
Doo-Sun Choi ◽  
...  

AbstractMicrowave absorbers using conductive ink are generally fabricated by printing an array pattern on a substrate to generate electromagnetic fields. However, screen printing processes are difficult to vary the sheet resistance values for different regions of the pattern on the same layer, because the printing process deposits materials at the same height over the entire surface of substrate. In this study, a promising manufacturing process was suggested for engraved resistive double square loop arrays with ultra-wide bandwidth microwave. The developed manufacturing process consists of a micro-end-milling, inking, and planing processes. A 144-number of double square loop array was precisely machined on a polymethyl methacrylate workpiece with the micro-end-milling process. After engraving array structures, the machined surface was completely covered with the developed conductive carbon ink with a sheet resistance of 15 Ω/sq. It was cured at room temperature. Excluding the ink that filled the machined double square loop array, overflowed ink was removed with the planing process to achieve full filled and isolated resistive array patterns. The fabricated microwave absorber showed a small radar cross-section with reflectance less than − 10 dB in the frequency band range of 8.0–14.6 GHz.

Author(s):  
M. A. Rahman ◽  
A. M. Jacobi

In the present study, we report the contact angle hysteresis and drainage behavior of water drops on a number of brass surfaces with parallel microgrooves and compare them to the flat baseline surfaces. Parallel micro-grooves with different groove dimensions are fabricated by micro end-milling process without any modification of the surface chemistry. Advancing and receding contact angles in both parallel and perpendicular direction of the grooves and also the drainage behavior of water droplets on the microgrooved surfaces is found to be considerably affected by change in groove geometry parameters. Very high hysteresis is observed for both low (< 0.2) and high aspect ratio (> 0.7) of grooves and also for surfaces with lower groove spacing due to the droplets being in a Wenzel state. For intermediate aspect ratio (0.25–0.70) and larger spacing of the grooves, droplets remain in a Cassie state and the hysteresis is lower in both directions than that on the flat surfaces. Variation of critical sliding angle (angle at the point of incipient sliding of water droplets due to gravity) with groove geometry is investigated for a range of water droplet volume of 15 to 75 μl. Droplets of all volumes are found to slide much more readily on grooved surfaces than when placed on the flat baseline surfaces. Height and spacing of the grooves are also found to have significant influence on the sliding of the water droplets, as critical inclination angle decreased with groove height and increased with groove spacing. The results from this study may be useful in a broad range of applications where water retention plays an important role.


Author(s):  
Xuewei Zhang ◽  
Tianbiao Yu ◽  
Wanshan Wang

An accurate prediction of cutting forces in the micro end milling, which is affected by many factors, is the basis for increasing the machining productivity and selecting optimal cutting parameters. This paper develops a dynamic cutting force model in the micro end milling taking into account tool vibrations and run-out. The influence of tool run-out is integrated with the trochoidal trajectory of tooth and the size effect of cutting edge radius into the static undeformed chip thickness. Meanwhile, the real-time tool vibrations are obtained from differential motion equations with the measured modal parameters, in which the process damping effect is superposed as feedback on the undeformed chip thickness. The proposed dynamic cutting force model has been experimentally validated in the micro end milling process of the Al6061 workpiece. The tool run-out parameters and cutting forces coefficients can be identified on the basis of the measured cutting forces. Compared with the traditional model without tool vibrations and run-out, the predicted and measured cutting forces in the micro end milling process show closer agreement when considering tool vibrations and run-out.


Author(s):  
Dae Hoon Kim ◽  
Pil-Ho Lee ◽  
Jung Sub Kim ◽  
Hyungpil Moon ◽  
Sang Won Lee

This paper investigates the characteristics of micro end-milling process of titanium alloy (Ti-6AL-4V) using nanofluid minimum quantity lubrication (MQL). A series of micro end-milling experiments are conducted in the meso-scale machine tool system, and milling forces, burr formations, surface roughness, and tool wear are observed and analyzed according to varying feed per tooth and lubrication conditions. The experimental results show that MQL and nanofluid MQL with nanodiamond particles can be effective to reduce milling forces, burrs and surface roughness during micro end-milling of titanium alloy. In particular, it is demonstrated that smaller size of nanodiamond particles — 35 nm — can be more effective to decrease burrs and surface roughness in the case of nanofluid MQL micro end-milling.


2020 ◽  
Vol 22 (4) ◽  
pp. 31-40
Author(s):  
Andrei Markov ◽  
◽  
Vyacheslav Nekrasov ◽  
Jian Su ◽  
Azhar Salman ◽  
...  

Introduction. Today fiberglass is one of the most common composite materials. Therefore, its mechanical processing continues to be the subject of many studies. In many scientific publications, the influence of cutting modes and structural and geometric parameters of the tool on the roughness of the machined surface, cutting forces and wear of the cutting tool has been established. The purpose of this work is to study the effect of machining modes on delamination and roughness of fiberglass composites during end milling, as well as testing the hypothesis about the effect of torque on the delamination. The relevance of the study is due to the fact that delamination, along with roughness, has a significant impact on the quality of processing and subsequent assembly of the finished product. A criterion is proposed for assessing the magnitude of the delamination of composite materials during its machining. The results of experimental studies of the torque on the cutter, the relative coefficient of delamination and surface roughness from cutting conditions are presented. Methods: factorial experiment using an experimental assembly developed by the authors based on a piezoelectric torque sensor. The installation allows real-time recording of the change in torque during the milling process, depending on the modes of operation. Results and Discussion. A comparative analysis of the obtained dependences showed that the torque is directly related to delamination. To reduce the delamination, the depth of cut should be decreased, and in order to ensure the specified productivity, the feed and the rotational speed of the cutter should be increased. The presented results confirm the prospects of the developed approach aimed at machining new classes of composite materials.


Sign in / Sign up

Export Citation Format

Share Document