scholarly journals Clubroot resistance derived from the European Brassica napus cv. ‘Tosca’ is not effective against virulent Plasmodiophora brassicae isolates from Alberta, Canada

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rudolph Fredua-Agyeman ◽  
Sheau-Fang Hwang ◽  
Hui Zhang ◽  
Igor Falak ◽  
Xiuqiang Huang ◽  
...  

AbstractIn this study, clubroot resistance in the resynthesized European winter Brassica napus cv. ‘Tosca’ was introgressed into a Canadian spring canola line ‘11SR0099’, which was then crossed with the clubroot susceptible spring line ‘12DH0001’ to produce F1 seeds. The F1 plants were used to develop a doubled haploid (DH) mapping population. The parents and the DH lines were screened against ‘old’ pathotypes 2F, 3H, 5I, 6M and 8N of the clubroot pathogen, Plasmodiophora brassicae, as well as against the ‘new’ pathotypes 5X, 5L, 2B, 3A, 3D, 5G, 8E, 5C, 8J, 5K, 3O and 8P. Genotyping was conducted using a Brassica 15K SNP array. The clubroot screening showed that ‘Tosca, ‘11SR0099’ and the resistant DH lines were resistant to three (2F, 3H and 5I) of the five ‘old’ pathotypes and four (2B, 3O, 8E and 8P) of the 12 ‘new’ pathotypes, while being moderately resistant to the ‘old’ pathotype 8N and the ‘new’ pathotypes 3D and 5G. ‘Tosca’ was susceptible to isolates representing pathotype 3A (the most common among the ‘new’ pathotypes) as well as pathotypes 6M, 5X, 5L, 5K and 8J. Linkage analysis and QTL mapping identified a ca. 0.88–0.95 Mb genomic region on the A03 chromosome of ‘Tosca’ as conferring resistance to pathotypes 2F, 3H, 5I, 2B, 3D, 5G, 8E, 3O and 8P. The identified QTL genomic region housed the CRk, Crr3 and CRd gene(s). However, the susceptibility of ‘Tosca’ to most of the common virulent pathotypes makes it unattractive as a sole CR donor in the breeding of commercial canola varieties in western Canada.

Genome ◽  
2020 ◽  
Author(s):  
Aarohi Summanwar ◽  
Urmila Basu ◽  
Nat N. V. Kav ◽  
Habibur Rahman

Clubroot resistance in spring canola has been introgressed from different Brassica sources; however, molecular mechanism underlying this resistance, especially the involvement of long non-coding RNAs (lncRNAs), yet to be understood. We identified 464 differentially expressed (DE) lncRNAs from the roots of clubroot resistant canola, carrying resistance on chromosome BnaA03, and susceptible canola lines challenged with Plasmodiophora brassicae pathotype 3. Pathway enrichment analysis showed that most of the target genes regulated by these DE lncRNAs belonged to plant-pathogen interaction and hormone signaling, as well as primary and secondary metabolic pathways. Comparative analysis of these lncRNAs with the previously reported 530 DE lncRNAs, identified using resistance located on BnaA08, detected 12 lncRNAs which showed a similar trend of upregulation in both types of resistant lines; these lncRNAs probably play a fundamental role in clubroot resistance. We identified SSR markers within 196 DE lncRNAs. Genotyping of two DH populations carrying resistance on BnaA03 identified a marker capable of detecting the resistance in 98% of the DH lines. To our knowledge, this is the first report of the identification of SSRs within the lncRNAs responsive to P. brassicae infection demonstrating the potential use of the lncRNAs in the breeding of Brassica crops.


Plant Disease ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Homa Askarian ◽  
Alireza Akhavan ◽  
Victor P. Manolii ◽  
Tiesen Cao ◽  
Sheau-Fang Hwang ◽  
...  

Clubroot, caused by Plasmodiophora brassicae Woronin, is an important disease of canola (Brassica napus L.) that is managed mainly by planting clubroot-resistant (CR) cultivars. Field isolates of P. brassicae can be heterogeneous mixtures of various pathotypes, making assessments of the genetics of host–pathogen interactions challenging. Thirty-four single-spore isolates were obtained from nine field isolates of the pathogen collected from CR canola cultivars. The virulence patterns of the single-spore and field isolates were assessed on the 13 host genotypes of the Canadian Clubroot Differential (CCD) set, which includes the differentials of Williams and Somé et al. Indices of disease (IDs) severity of 25, 33, and 50% (±95% confidence interval) were compared as potential thresholds to distinguish between resistant and susceptible reactions, with an ID of 50% giving the most consistent responses for pathotype classification purposes. With this threshold, 13 pathotypes could be distinguished based on the CCD system, 7 on the differentials of Williams, and 3 on the hosts of Somé et al. The highest correlations were observed among virulence matrices generated using the three threshold IDs on the CCD set. Genetically homogeneous single-spore isolates gave a clearer profile of the P. brassicae pathotype structure. Novel pathotypes, not reported in Canada previously, were identified among the isolates. This large collection of single-spore isolates can serve as a reference in screening and breeding for clubroot resistance.


2014 ◽  
Vol 36 (sup1) ◽  
pp. 49-65 ◽  
Author(s):  
S.-F. Hwang ◽  
R. J. Howard ◽  
S. E. Strelkov ◽  
B. D. Gossen ◽  
G. Peng

2001 ◽  
Vol 81 (1) ◽  
pp. 105-106 ◽  
Author(s):  
S. R. Rimmer ◽  
R. Scarth ◽  
P. B. E. McVetty

Cartier BX is the fourth in the Navigator® series of summer oilseed rape (Brassica napus L.) canola cultivars, which are resistant to Compas® herbicide, a mix of herbicides including the broadleaf herbicide bromoxynil. It is 32 kg ha–1 (1.3%) higher yielding than the mean of the check cultivars Defender, AC Excel and Legacy, is 5 g kg–1 lower in oil concentration and is 11 g kg–1 higher in protein concentration than the means of the check cultivars, respectively. Cartier BX is moderately resistant to blackleg disease. Cartier BX is adapted to the long- and mid-season B. napus canola-growing areas of western Canada. Key words: Oilseed rape (summer), bromoxynil resistance, Navigator® , Compas®


2001 ◽  
Vol 81 (1) ◽  
pp. 93-95 ◽  
Author(s):  
P. B. E. McVetty ◽  
S. R. Rimmer ◽  
R. Scarth

Armor BX is the first in the Navigator® series of summer oilseed rape (Brassica napus L.) canola cultivars, which are resistant to Compas® herbicide, a mix of herbicides including the broadleaf herbicide bromoxynil. It is 60 kg ha–1 (2.5%) higher yielding than the mean of the checks Cyclone, AC Excel and Legend, is 1 g kg–1 higher than the mean of the checks for oil concentration and is moderately resistant to blackleg. Armor BX is adapted to the long- and mid-season B. napus canola-rowing areas of western Canada. Key words: Oilseed rape (summer), bromoxynil resistance, Navigator®, Compas®


Genome ◽  
2016 ◽  
Vol 59 (10) ◽  
pp. 805-815 ◽  
Author(s):  
Muhammad Jakir Hasan ◽  
Habibur Rahman

Clubroot disease, caused by Plasmodiophora brassicae, is a threat to the production of Brassica crops including oilseed B. napus. In Canada, several pathotypes of this pathogen, such as pathotypes 2, 3, 5, 6, and 8, were identified, and resistance to these pathotypes was found in a rutabaga (B. napus var. napobrassica) genotype. In this paper, we report the genetic basis and molecular mapping of this resistance by use of F2, backcross (BC1), and doubled haploid (DH) populations generated from crossing of this rutabaga line to a susceptible spring B. napus canola line. The F1, F2, and BC1 populations were evaluated for resistance to pathotype 3, and the DH population was evaluated for resistance to pathotypes 2, 3, 5, 6, and 8. A 3:1 segregation in F2 and a 1:1 segregation in BC1 were found for resistance to pathotype 3, and a 1:1 segregation was found in the DH population for resistance to all pathotypes. Molecular mapping by using the DH population identified a genomic region on chromosome A8 carrying resistance to all five pathotypes. This suggests that a single gene or a cluster of genes, located in this genomic region, is involved in the control of resistance to these pathotypes.


2001 ◽  
Vol 81 (1) ◽  
pp. 101-103 ◽  
Author(s):  
P. B. E. McVetty ◽  
R. Scarth ◽  
S. R. Rimmer

Zodiac BX is the third in the Navigator® series of summer oilseed rape (Brassica napus L.) canola cultivars, which are resistant to Compas® herbicide, a mix of herbicides including the broadleaf herbicide bromoxynil. Zodiac BX is equal in yield and oil content to the mean of the checks, Legend, AC Excel and Cyclone. Zodiac BX is moderately resistant to blackleg disease. Zodiac BX is adapted to the long- and mid-season B. napus canola-growing areas of western Canada. Key words: Oilseed rape (summer), bromoxynil resistance, Navigator® , Compas®


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 151 ◽  
Author(s):  
Nazanin Zamani-Noor ◽  
Imke Krohne ◽  
Birger Koopmann

Clubroot resistance of oilseed rape (OSR) cultivars frequently relies on a major resistance gene originating from cv. Mendel. The efficacy of this resistance was studied in greenhouse experiments using two Plasmodiophora brassicae isolates, which were either virulent (P1(+)) or avirulent (P1) on Mendel. Seeds of clubroot-susceptible cultivar Visby and clubroot-resistant cultivar Mendel were sown in soil mixtures inoculated with different concentrations of resting spores (101, 103, 105, and 107 resting spores/g soil). Clubroot severity, plant height, shoot and root weight as well as resting spore propagation were assessed for each isolate and cultivar separately at four dates after sowing. The OSR cultivars behaved significantly different in the measured parameters. The threshold of inoculum density to cause disease depended strongly on the virulence of the pathogen and susceptibility of the host plant. In Visby grown in soil infested with P1, clubroot symptoms and increases in root weight and the number of propagated resting spores occurred at inoculum levels of 101 resting spores and higher, whereas Mendel was not affected in soils under the three lowest inoculum densities. In contrast, the P1(+) isolate led to earlier and more severe symptoms, heavier galls, and a significantly higher number of new resting spores in both cultivars.


Sign in / Sign up

Export Citation Format

Share Document