soil inoculum
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ebba Peterson ◽  
Niklaus J. Grünwald ◽  
Jennifer Parke

Soilborne inoculum arising from buried, infested leaf debris may contribute to the persistence of Phytophthora ramorum at recurrently positive nurseries. To initiate new epidemics, inoculum must not only survive, but produce sporangia during times conducive to infection at the soil surface. To assess this risk, we performed two year-long experiments in a soil plot at the National Ornamentals Research Site at Dominican University of California. Inoculated rhododendron leaf disks were buried at a depth of 5 or 15 cm in the early summer of 2014 or 2015. Inoculum was baited at the soil surface with non-infested leaf disks (2014 only), then retrieved to assess pathogen viability and sporulation capacity every five weeks. Two 14-week-long trials were conducted in 2016. We were able to consistently culture P. ramorum over all time periods. Soil incubation rapidly reduced the capacity of inoculum to sporulate, especially at 5 cm; however, sporulation capacity increased with the onset of seasonally cooler temperatures. P. ramorum was baited most frequently between November and January, especially from inoculum buried at 5 cm 1-day before the baiting period; in January we also baited P. ramorum from inoculum buried at 15 cm the previous June. We validate prior observations that P. ramorum poses a greater risk after exposure to cooler temperatures and provide evidence that infested leaf debris plays a role in the perpetuation of P. ramorum in nurseries. This work provides novel insights into the survival and epidemic behavior of P. ramorum in nursery soils.


2021 ◽  
Author(s):  
Xu Han ◽  
Yingbin Li ◽  
Yuhui Li ◽  
Xiaofang Du ◽  
Bing Li ◽  
...  

AbstractThe importance of soil inoculation to engineer soil microbiomes and ultimately entire ecosystems is becoming widely acknowledged. Inoculation with soil from different ecosystems can induce directional changes in soil and plant communities and promote the restoration of degraded ecosystems. However, it is unknown how such inoculations influence the soil microbiome, how much inoculum is needed, and whether inocula collected from similar ecosystems will steer the microbiome in different directions. We conducted a three-year soil inoculation field experiment at a degraded grassland and used two different soil inocula both from grasslands with three inoculation rates. Our results show that inoculation with soil that originates from different donor grasslands steers the soil microbiome as well as the plant communities at the inoculated site which was a degraded grassland into different directions and that these effects were stronger with increasing amount of soil used to inoculate. Inoculation with upland meadow soil introduced more keystone genera and resulted in more complex biotic networks in the soil than inoculation with meadow steppe soil. Our experiment highlights that soil inoculation can steer soil microbiomes in the field and that the direction and speed of development depend on the origin and the amount of soil inoculum used.


2021 ◽  
Author(s):  
Theresa S. Ibáñez ◽  
David A. Wardle ◽  
Michael J. Gundale ◽  
Marie-Charlotte Nilsson

<p>Changes in fire regime of boreal forests are predicted to alter plant and soil community structure and cause elevated tree mortality, increased loss of soil organic matter and reduced survival and functioning of soil microbial communities. While the impact of wildfire disturbance on plant mortality and post-fire successions in boreal forests has been studied extensively, little is known about how changes in soil properties after fire, including biotic and abiotic properties, individually and interactively impact tree seedling regeneration. The aim of this study was therefore to disentangle how tree seedling performance is independently and interactively controlled by soil biotic versus abiotic properties following wildfire.</p><p>We performed two greenhouse experiments in which seedlings of <em>Betula pendula</em>, <em>Pinus sylvestris</em> and <em>Picea abies</em> were grown in soils collected from forest stands in east-central Sweden that had been subjected to three burn severities (high, low and unburnt) following a large-scale wildfire. The first experiment consisted of live soil originating from every stand in each burn severity class crossed with each tree species. The second experiment was similar, except that all soil was first sterilized, and then was crossed with live soil inoculum originating from each of the burn severity classes and grown with each tree species. The results showed that tree seedlings subjected to live soil grew best in soil from unburnt stands (experiment 1), and that <em>P. abies </em>and <em>P. sylvestris</em> seedlings increased growth when planted in soil inoculated with biota from low burn severity stands compared to high burn severity or unburnt stands (experiment 2). In contrast, <em>B. pendula</em> was not responsive to soil inoculum treatments, but instead was driven by post-fire abiotic properties of soils. These results indicate that fire disturbances may lead to reduced regeneration of conifers, unless soil biota is maintained or has recovered, and further suggests that soil from high burn severity stands may constrain seedling regeneration, whereas soil biota from low burn severity stands promotes growth and regeneration of conifers. Our study also shows that different seedling species respond differently to abiotic and biotic soil properties altered by different burn severities, which is relevant because burn probability and fire intensity are projected to increase and become more common in many parts of the boreal region as the climate warms.</p>


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 151 ◽  
Author(s):  
Nazanin Zamani-Noor ◽  
Imke Krohne ◽  
Birger Koopmann

Clubroot resistance of oilseed rape (OSR) cultivars frequently relies on a major resistance gene originating from cv. Mendel. The efficacy of this resistance was studied in greenhouse experiments using two Plasmodiophora brassicae isolates, which were either virulent (P1(+)) or avirulent (P1) on Mendel. Seeds of clubroot-susceptible cultivar Visby and clubroot-resistant cultivar Mendel were sown in soil mixtures inoculated with different concentrations of resting spores (101, 103, 105, and 107 resting spores/g soil). Clubroot severity, plant height, shoot and root weight as well as resting spore propagation were assessed for each isolate and cultivar separately at four dates after sowing. The OSR cultivars behaved significantly different in the measured parameters. The threshold of inoculum density to cause disease depended strongly on the virulence of the pathogen and susceptibility of the host plant. In Visby grown in soil infested with P1, clubroot symptoms and increases in root weight and the number of propagated resting spores occurred at inoculum levels of 101 resting spores and higher, whereas Mendel was not affected in soils under the three lowest inoculum densities. In contrast, the P1(+) isolate led to earlier and more severe symptoms, heavier galls, and a significantly higher number of new resting spores in both cultivars.


Author(s):  
Harri Talvenmäki ◽  
Niina Saartama ◽  
Anna Haukka ◽  
Katri Lepikkö ◽  
Virpi Pajunen ◽  
...  

AbstractA residential lot impacted by spills from a leaking light heating oil tank was treated with a combination of chemical oxidation and bioremediation to avoid technically challenging excavation. The tank left emptied in the ground was used for slow infiltration of the remediation additives to the low permeability, clayey soil. First, hydrogen peroxide and citrate chelate was added for Fenton’s reaction–based chemical oxidation, resulting in a ca. 50% reduction from the initial 25,000 mg/kg average oil concentration in the soil below the tank. Part of this was likely achieved through mobilization of oily soil into the tank, which was beneficial in regards to the following biological treatment. By first adding live bacteria in a soil inoculum, and then oxygen and nutrients in different forms, an approximately 90% average reduction was achieved. To further enhance the effect, methyl-β-cyclodextrin surfactant (CD) was added, resulting finally in a 98% reduction from the initial average level. The applicability of the surfactant was based on laboratory-scale tests demonstrating that CD promoted oil degradation and, unlike pine soap, was not utilized by the bacteria as a carbon source, and thus inhibiting degradation of oils regardless of the positive effect on biological activity. The effect of CD on water solubility for different hydrocarbon fractions was tested to serve as the basis for risk assessment requirements for authorizing the use of the surfactant at the site.


Plant Disease ◽  
2020 ◽  
Author(s):  
Kelley Rose Paugh ◽  
Thomas Gordon

Fusarium oxysporum f. sp. lactucae, the cause of Fusarium wilt of lettuce, can survive on crop residue in soil. Persistence of the pathogen over time will be influenced by the rate at which residue decomposes. We evaluated the effect of drying and fragmenting crop residue on the rate of decomposition and survival of F. oxysporum f. sp. lactucae. In a controlled experiment that represented optimal drying conditions, fragmenting and oven-drying infested lettuce taproots at 30°C significantly reduced the frequency of recovery of the pathogen, compared to untreated tissue. However, in a field experiment, drying infested crop residue on the soil surface prior to incorporation did not significantly reduce survival of F. oxysporum f. sp. lactucae after one year. Regardless of treatment, there was not a significant decrease in soil inoculum density between one and 12 months after residue was incorporated. In a greenhouse experiment, fragmenting crop residue prior to incorporation in pathogen-free soil resulted in significantly higher inoculum densities of F. oxysporum f. sp. lactucae after one year. The increase in inoculum levels was associated with a faster rate of residue decomposition, which may be beneficial in the long run but not where lettuce will be replanted within the next year.


Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 2807-2816
Author(s):  
Yuan Zeng ◽  
Ana Cristina Fulladolsa ◽  
Andrew M. Cordova ◽  
Patrick O’Neill ◽  
Stewart M. Gray ◽  
...  

Spongospora subterranea is a soilborne plasmodiophorid that causes powdery scab in potato. It also transmits potato mop-top virus (PMTV), which causes necrotic arcs (spraing) in potato tubers. Three field experiments were conducted in naturally S. subterranea-infested soil to investigate the effects of two chemicals, Omega 500F (fluazinam) and FOLI-R-PLUS RIDEZ (biological extract), on powdery scab, PMTV, and changes in S. subterranea inoculum with six different potato cultivars. The efficacy of soil treatment with these two chemicals on tuber lesions, root galling, and pathogen population was also assessed in greenhouse trials. The chemical treatments did not reduce powdery scab, root gall formation, or S. subterranea inoculum in the field or greenhouse trials. Postharvest S. subterranea soil inoculum in fields varied across farms and among potato cultivars but the pathogen population consistently increased by the end of the growing season. The evaluated russet cultivars were more tolerant to powdery scab than the yellow- or red-skinned cultivars but all were susceptible to PMTV. In the field, powdery scab indices and soil inoculum changes were positively correlated, while postharvest S. subterranea inoculum was positively correlated with root galling in both greenhouse trials. Powdery scab and PMTV occurred in noninoculated potting mix, indicating that peat-based potting mix is a source for both pathogens. These results demonstrate that chemical management methods currently used by farmers are ineffective, that S. subterranea and PMTV in potting mix can cause severe epidemics in greenhouses, and that potato cultivar choices impact inoculum increases in soil.


2020 ◽  
Vol 455 (1-2) ◽  
pp. 171-186
Author(s):  
Shealyn C. Malone ◽  
David K. Weaver ◽  
Tim F. Seipel ◽  
Fabian D. Menalled ◽  
Megan L. Hofland ◽  
...  

Abstract Aims (main purpose and research question) Soil properties, including microbial composition and nutrient availability, can influence the emissions of plant volatile organic compounds (VOCs) that serve as host-location cues for insect pests and their natural enemies. Agricultural practices have profound effects on soil properties, but how these influence crop VOCs remains largely unknown. The aim of this study was to investigate the effect of agricultural practices on constitutive and herbivore-induced VOC emissions by a major staple crop through soil legacy effects. Methods In a full factorial experiment, we measured VOC emissions by wheat (Triticum aestivum) grown in soil inoculum from wheat-fallow or wheat-cover crop rotations that was subjected to feeding by larval Cephus cinctus. Results (main findings) Under herbivory, plants grown in cover crop inoculum emitted greater total VOCs, including higher concentrations of 2-pentadecanone, an insect repellent, and nonanal, a compound important in the recruitment of natural enemies. Plants grown in fallow inoculum showed no differences in emissions whether under herbivory or not. Soil inoculum did not influence VOC emissions of plants in the absence of larval feeding. Conclusions These results suggest that agricultural practices influence crop VOC emissions through soil legacy effects. Additionally, crops grown in wheat-fallow rotations may be less successful recruiting natural enemies of pests through herbivore-induced VOC signaling. Abbreviations Volatile organic compounds (VOCs); herbivore-induced plant volatiles (HIPV); green leaf volatiles (GLVs); northern Great Plains (NGP); wheat stem sawfly (WSS); gas chromatography-mass spectrometry (GC-MS); non-metric multidimensional scaling (NMDS); generalized linear mixed-effects model (GLMM).


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1685-1692 ◽  
Author(s):  
Andréanne Sauvageau ◽  
Valérie Gravel ◽  
Hervé Van der Heyden

In Quebec muck soils, Pythium stunt (Pythium tracheiphilum Matta) is responsible for important yield losses in head lettuce crops each year, which can reach up to 50% in certain cases. Despite the significance of the disease, factors influencing its development remain poorly documented, and no disease risk indicators are available, which makes the development of management strategies difficult. Hence, growers systematically use chemical fungicides throughout the growing season to reduce crop losses. However, it is known that soilborne disease incidence or severity may be influenced by soil inoculum density and environmental parameters. Therefore, the objectives of this study were to investigate the influence of inoculum density on lettuce growth under controlled conditions and evaluate the influence of soil inoculum density, air temperature, relative humidity, and rainfall on disease incidence under field conditions. In particular, this study aims to develop accurate predictors for Pythium stunt incidence. Results showed that, under controlled environment, thresholds of inoculum density of 97 and 46 propagules per gram of dry soil were needed to reduce lettuce dry weight by one-half for cultivars Estival and Prestige, respectively. These results were confirmed under field conditions, where a soil inoculum density >132 propagules per gram of dry soil combined with air temperatures <18°C for the first 2 weeks and rain accumulation >64 mm for the first 3 weeks after transplanting accurately predicted disease incidence 79% of the time. These relationships improve understanding of seasonal Pythium stunt development and will provide useful tools to develop sustainable management strategies.


2019 ◽  
Vol 29 (3) ◽  
Author(s):  
Sara Grove ◽  
Norah P. Saarman ◽  
Gregory S. Gilbert ◽  
Brant Faircloth ◽  
Karen A. Haubensak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document