scholarly journals Effect of land-use change along altitudinal gradients on soil micronutrients in the mountain ecosystem of Indian (Eastern) Himalaya

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Burhan U. Choudhury ◽  
Meraj A. Ansari ◽  
Mahasweta Chakraborty ◽  
Thounaojam T. Meetei

AbstractManagement of soil micronutrients for better crop production needs a sound understanding of their status and causes of variability. This is more relevant for acid soils of the mountain ecosystem of Eastern Himalaya (Northeast India). We assessed the status, and the effect of land uses along altitudinal gradients (14 to 4090 masl) on soil properties and micronutrient concentrations (DTPA extractable Fe, Mn, Cu, and Zn) across the region. Soils varied widely in micronutrient concentrations: Fe from 0.665 to 257.1 mg kg−1 while Mn, Cu, and Zn from traces to 93.4, 17.1, and 34.2 mg kg−1, respectively. On conversion of evergreen forests (EF) to upland agriculture (Shifting—SC and Settled—SA) and plantation (PH), Mn, Cu, and Zn concentrations decreased significantly from 30.5, 1.74, and 2.13 mg kg−1 to 6.44–17.8, 0.68–0.81, and 1.06–1.42 mg kg−1, respectively. Grassland (GL) and lowland paddy (LP) had comparable Fe, Mn, and Cu concentrations (except Zn). Degradation of EF to scrubland (SL) recorded the lowest Mn (5.91 mg kg−1), Cu (0.59 mg kg−1), and Zn (0.68 mg kg−1) concentrations. Fe concentration was however increased in degraded SL (+ 73%) over EF (48.7 mg kg−1). The distribution of micronutrients among the land uses was inconsistent and followed the order: (i) Fe: SL > PH > LP > EF > GL > SC > SA, (ii) Mn: EF > GL > LP > PH > SC > SA > SL; (iii) Cu: EF > GL > LP > SC > SA = PH > SL; and (iv) Zn: GL > EF > LP > SC > SA > PH > SL. Four micronutrients responded differently and followed a non-linear, 6th—order polynomial trend along the altitudinal gradients (< 500 to 4100 masl). Peak concentrations of Fe, Mn, and Cu were recorded at 1001–2000 m while Zn was recorded at > 4000 masl. The variability (54–64%) in soil micronutrients was mainly controlled by three key soil properties: acidity, clay, and organic carbon contents. Thus, altitude-specific land-use management holds significance in the distribution of available soil micronutrients in hilly ecosystems.

2020 ◽  
Author(s):  
Burhan Choudhury ◽  
Meraj Ansari ◽  
M Chakraborty ◽  
T Meetei

Abstract Management of soil micronutrients for better crop produce needs sound understanding of their status and causes of variability. This is more relevant for acid soils developed in the mountain ecosystem of Eastern Himalaya (Northeast India). We assessed the status, and the effect of land use systems along wide altitudinal gradients (14 m to 4090 m masl) on soil properties and plant available micronutrient concentrations (DTPA extractable Fe, Mn, Cu and Zn) across the region. Soils of the region varied widely in micronutrient concentrations: Fe from 0.665 to 257.1 mg kg-1 while Mn, Cu and Zn from traces to 93.4, 17.1 and 34.2 mg kg-1, respectively. On conversion of evergreen forests (EF) to upland agriculture (Shifting-SC and Settled-SA) and plantation (PH), Mn, Cu and Zn concentrations decreased significantly (p <0.05) from 30.5, 1.74 and 2.13 mg kg-1 to 6.44-17.8, 0.68-0.81 and 1.06-1.42 mg kg-1, respectively. Grass land (GL) recorded the highest Zn concentration (3.0 mg kg-1) while Mn (24.9 mg kg-1) and Cu (1.16 mg kg-1) concentrations were comparable with lowland paddy agriculture (LP) but higher than upland agriculture. Degradation of EF to scrub land (SL) recorded the lowest Mn (5.91 mg kg-1), Cu (0.59 mg kg-1), and Zn (0.68 mg kg-1) concentrations. The Fe concentration was however, comparable among EF, GL, LP and SC (40.1-52.2 mg kg-1) but increased in degraded SL (+73%) over EF (48.7 mg kg-1). Micronutrient concentrations among the land uses were inconsistent and followed the order: (i) Fe: SL>PH>LP>EF>GL>SC>SA, (ii) Mn: EF> GL> LP> PH> SC> SA>SL; (iii) Cu: EF>GL>LP>SC>SA=PH>SL; and (iv) GL>EF>LP>SC>SA>PH>SL. Four micronutrients responded differently and followed a non-linear, 6th – order polynomial trend along the altitudinal gradients (<500 m to 4100 m masl). Peak concentrations of Fe, Mn, and Cu were recorded at 1001-2000 m elevation while Zn was recorded at > 4000 m masl. Altitude mediated positive influence on soil properties including micronutrient concentrations were observed only in non-cultivated land uses (EF and GL) with an exception to lowland agriculture. Three key soil properties namely pH, clay and organic carbon contents contributed significant variation (54-64%) in micronutrients in the soils of the region.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Soo Ying Ho ◽  
Mohd Effendi Bin Wasli ◽  
Mugunthan Perumal

A study was conducted in the Sabal area, Sarawak, to evaluate the physicochemical properties of sandy-textured soils under smallholder agricultural land uses. Study sites were established under rubber, oil palm, and pepper land uses, in comparison to the adjacent secondary forests. The sandy-textured soils underlain in all agricultural land uses are of Spodosols, based on USDA Soil Taxonomy. The soil properties under secondary forests were strongly acidic with poor nutrient contents. Despite higher bulk density in oil palm farmlands, soil properties in rubber and oil palm land uses showed little variation to those in secondary forests. Conversely, soils under pepper land uses were less acidic with higher nutrient contents at the surface layer, especially P. In addition, soils in the pepper land uses were more compact due to human trampling effects from regular farm works at a localized area. Positive correlations were observed between soil total C and soil total N, soil exchangeable K, soil sum of bases, and soil effective CEC, suggesting that soil total C is the determinant of soil fertility under the agricultural land uses. Meanwhile, insufficient K input in oil palm land uses was observed from the partial nutrient balances estimation. In contrast, P and K did not remain in the soils under pepper land use, although the fertilizers application by the farmers was beyond the crop uptake and removal (harvesting). Because of the siliceous sandy nature (low clay contents) of Spodosols, they are poor in nutrient retention capacity. Hence, maintaining ample supply of organic C is crucial to sustain the productivity and fertility of sandy-textured soils, especially when the litterfall layers covering the E horizon were removed for oil palm and pepper cultivation.


2021 ◽  
Vol 13 (2) ◽  
pp. 723-728
Author(s):  
Chowlani Manpoong ◽  
Wapongnungsang ◽  
S. K. Tripathi

Soil carbon is one of the most affected variables to land-use change in tropics. The soil carbon flux plays a major role in regulating microbial activities and nutrient distribution in soil. This study aimed to evaluate the soil carbon stock in various land uses at different depths in the hilly terrain of Mizoram, Northeast India. Soil samples at 0-10 cm, 10-20 cm and 20-30 cm soil depths were collected from Rubber plantation (RP), Oil palm plantation (OPP), Teak plantation (TP), Bamboo Forest (BF), 5 years fallow (5YF), 10 years fallow (10YF), Tephrosia candida plantation (TCP), Horticulture garden (HORT), Homegarden (HG) and Natural forest (NF). Soil carbon stock varied significantly (p <0.05) across the land uses and depths. The soil under Tephrosia candida stand had significantly (p <0.05) higher values of C stock (73.66 Mg ha-1) which may be due to high biomass, dense vegetative cover and high C in root exudates. The minimum C stock estimated in Horticulture garden (43.28 Mg ha-1) is probably due to reduced soil organic matter. Soil carbon stock in Homegarden, Teak plantation, Bamboo forest and Rubber plantation ranged from 46.82 Mg ha-1 to 59.34 Mg ha-1 whereas 5 years and 10 years fallow land, Natural forest and Oil palm plantation ranged from 61.35 Mg ha-1 to 73.35 Mg ha-1. The study indicated that the land use change in the mountainous region significantly affected the carbon stock in the soil. A proper land use management strategies to increase the soil organic matter is recommended to enhance the carbon stock in this region.


2021 ◽  
Author(s):  
Taicong Liu ◽  
Li Rong ◽  
Xingwu Duan ◽  
Zhe Chen

&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;: Land use is one of the most important forms in agricultural production. Non-appropriate land use can cause deterioration of physical, chemical and biological properties of soil, thus affecting sustainable agriculture. Earlier reports showed that land use drastically altered microbial community composition. However, the mechanism of land use on microbial communities is still not fully understood. In the present study, we focus on the dry hot valley, characterized by high temperature and low humility, to test whether soil properties from four primary land uses including the land conversion from farmland (SLC), sugarcane land (SL), maize land with conventional tillage (CT) and bare land (BL) have different influences on soil microbial communities. The results showed that land uses altered bacterial and fungal community composition. In SL and BL, we found the respective absence of a kind of fungi at phylum the level. The abundances of several bacterial phyla in SL such as Gemmatimonadets and Acidobacteria associated with promoting mineralization were higher than that in other land uses. RDA indicated that bacterial communities were influenced by soil total nitrogen, total organic carbon and available potassium contents, and fungal communities were dominated by available potassium contents. SEM (structural equation model) showed that land use has direct and indirect effects on bacterial composition, while only indirect effects on fungal by land use. Land use indirectly affected bacterial composition through effects on soil moisture, clay and available potassium contents, whereas through effects on clay and available potassium for fungal composition. Land use exhibited greater impacts on bacterial composition than fungal composition, implying bacteria was more sensitive to land use changes compared to fungi in the dry-hot valley. Considering the low level of total potassium in soil under SL and CT, elevated potassium fertilizer would be a beneficial pathway to improve soil microbial composition and soil nutrients in the dry hot valley.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Key word&lt;/strong&gt;: Land use, Soil microbial community, Dry-hot valley, Soil properties, Structural equation model.&lt;/p&gt;


2018 ◽  
Vol 1 (1) ◽  
pp. 32-42 ◽  
Author(s):  
Pramod Ghimire ◽  
Balram Bhatta ◽  
Basudev Pokhrel ◽  
Ishu Shrestha

Soil quality is the capacity of soil to sustain biological productivity and environmental quality. Assessment of soil quality in different land use systems is essential as inappropriate land use management can degrade and deteriorate its function and stability. In this regard this study was carried out to evaluate soil quality of different land use types in Chure region of central Nepal. Soil quality index (SQI) was determined on the basis of the soil physiochemical parameters. Soil properties like soil pH, organic matter (OM), total nitrogen (TN), available potassium (AK), and available phosphorous (AP) were significantly affected by land uses types. Forest soil had the highest soil quality index (0.82) followed by bari (0.66), khet (0.64), and degraded land (0.40). Of the soil properties studied, total nitrogen and soil organic matter had the determining role in making significant impacts in the SQI among the different land uses. Hence, the results of this study can be important tool for planner, policy makers, and scientific community to frame appropriate land use management strategy.


2015 ◽  
Vol 2 (2) ◽  
pp. 1075-1101
Author(s):  
A. Adugna ◽  
A. Abegaz

Abstract. Land use change can have negative or positive effects on soil quality. Our objective was to assess the effects of land uses changes on the dynamics of selected soil physical and chemical properties. Soil samples were collected from three adjacent land uses, namely forestland, grazing land and cultivated land at 0–15 cm depth, and tested in National Soil Testing Center, Ministry of Agriculture of Ethiopia. Percentage changes of soil properties on cultivated and grazing land was computed and compared to forestland, and Analysis of variance (ANOVA) was used to test the significance of the changes. The results indicate that sand, silt, SOM, N, pH, CEC and Ca were the highest in forestlands. Mg was the highest in grazing land while clay, P and K were the highest in cultivated land. The percentage changes in sand, clay, SOM, pH, CEC, Ca and Mg were higher in cultivated land than the change in grazing land compared to forestland, except P. In terms of relationship between soil properties; SOM, N, CEC and Ca were strongly positively correlated with most of soil properties while P and silt have no significant relationship with any of other considered soil properties. Clay has negative correlation with all of soil properties. Generally, cultivated land has the least concentration of soil physical and chemical properties except clay and AP which suggest increasing degradation rate in soils of cultivated land. So as to increase SOM and other nutrients in the soil of cultivated land, integrated implementation of land management through compost, cover crops, manures, minimum tillage and crop rotation; and liming to increase soil pH are suggested.


2015 ◽  
Vol 7 (1) ◽  
pp. 301-327 ◽  
Author(s):  
V. Ferreira ◽  
T. Panagopoulos ◽  
R. Andrade ◽  
C. Guerrero ◽  
L. Loures

Abstract. The aim of this work is to investigate how the spatial variability of soil properties and soil erodibility (K factor) were affected by the changes in land use allowed by irrigation with water from a reservoir in a semiarid area. To this, three areas representative of different land uses (agroforestry grassland, Lucerne crop and olive orchard) were studied within a 900 ha farm. The interrelationships between variables were analyzed by multivariate techniques and extrapolated using geostatistics. The results confirmed differences between land uses for all properties analyzed, which was explained mainly by the existence of diverse management practices (tillage, fertilization and irrigation), vegetation cover and local soil characteristics. Soil organic matter, clay and nitrogen content decreased significantly, while K factor increased with intensive cultivation. The HJ-biplot methodology was used to represent the variation of soil erodibility properties grouped in land uses. Native grassland was the least correlated with the other land uses. K factor demonstrated high correlation mainly with very fine sand and silt. The maps produced with geostatistics were crucial to understand the current spatial variability in the Alqueva region. Facing the intensification of land-use conversion, a sustainable management is needed to introduce protective measures to control soil erosion.


Solid Earth ◽  
2015 ◽  
Vol 6 (2) ◽  
pp. 383-392 ◽  
Author(s):  
V. Ferreira ◽  
T. Panagopoulos ◽  
R. Andrade ◽  
C. Guerrero ◽  
L. Loures

Abstract. The aim of this work is to investigate how the spatial variability of soil properties and soil erodibility ($K$ factor) were affected by the changes in land use allowed by irrigation with water from a reservoir in a semiarid area. To this end, three areas representative of different land uses (agroforestry grassland, lucerne crop and olive orchard) were studied within a 900 ha farm. The interrelationships between variables were analyzed by multivariate techniques and extrapolated using geostatistics. The results confirmed differences between land uses for all properties analyzed, which was explained mainly by the existence of diverse management practices (tillage, fertilization and irrigation), vegetation cover and local soil characteristics. Soil organic matter, clay and nitrogen content decreased significantly, while the K factor increased with intensive cultivation. The HJ-Biplot methodology was used to represent the variation of soil erodibility properties grouped in land uses. Native grassland was the least correlated with the other land uses. The K factor demonstrated high correlation mainly with very fine sand and silt. The maps produced with geostatistics were crucial to understand the current spatial variability in the Alqueva region. Facing the intensification of land-use conversion, a sustainable management is needed to introduce protective measures to control soil erosion.


Sign in / Sign up

Export Citation Format

Share Document