scholarly journals Author Correction: Honey bee hives decrease wild bee abundance, species richness, and fruit count on farms regardless of wildflower strips

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. M. Angelella ◽  
C. T. McCullough ◽  
M. E. O’Rourke
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. M. Angelella ◽  
C. T. McCullough ◽  
M. E. O’Rourke

AbstractPollinator refuges such as wildflower strips are planted on farms with the goals of mitigating wild pollinator declines and promoting crop pollination services. It is unclear, however, whether or how these goals are impacted by managed honey bee (Apis mellifera L.) hives on farms. We examined how wildflower strips and honey bee hives and/or their interaction influence wild bee communities and the fruit count of two pollinator-dependent crops across 21 farms in the Mid-Atlantic U.S. Although wild bee species richness increased with bloom density within wildflower strips, populations did not differ significantly between farms with and without them whereas fruit counts in both crops increased on farms with wildflower strips during one of 2 years. By contrast, wild bee abundance decreased by 48%, species richness by 20%, and strawberry fruit count by 18% across all farm with honey bee hives regardless of wildflower strip presence, and winter squash fruit count was consistently lower on farms with wildflower strips with hives as well. This work demonstrates that honey bee hives could detrimentally affect fruit count and wild bee populations on farms, and that benefits conferred by wildflower strips might not offset these negative impacts. Keeping honey bee hives on farms with wildflower strips could reduce conservation and pollination services.


2020 ◽  
Vol 49 (6) ◽  
pp. 1437-1448 ◽  
Author(s):  
Gabriel G Foote ◽  
Nathaniel E Foote ◽  
Justin B Runyon ◽  
Darrell W Ross ◽  
Christopher J Fettig

Abstract The status of wild bees has received increased interest following recent estimates of large-scale declines in their abundances across the United States. However, basic information is limited regarding the factors affecting wild bee communities in temperate coniferous forest ecosystems. To assess the early responses of bees to bark beetle disturbance, we sampled the bee community of a Douglas-fir, Pseudotsuga menziesii (Mirb.), forest in western Idaho, United States during a Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins (Coleoptera: Curculionidae), outbreak beginning in summer 2016. We resampled the area in summer 2018 following reductions in forest canopy cover resulting from mortality of dominant and codominant Douglas-fir. Overall, results from rarefaction analyses indicated significant increases in bee diversity (Shannon’s H) in 2018 compared to 2016. Results from ANOVA also showed significant increases in bee abundance and diversity in 2018 compared to 2016. Poisson regression analyses revealed percent tree mortality from Douglas-fir beetle was positively correlated with increases in total bee abundance and species richness, where community response variables displayed a cubic trend with percent tree mortality. Percent reduction in canopy cover from 2016 to 2018 was also correlated with bee species richness and diversity. These findings suggest that wild bee communities may benefit from changes in forest structure following bark beetle outbreaks.


2018 ◽  
Vol 16 (6) ◽  
pp. 498-503 ◽  
Author(s):  
Zoe M. Portlas ◽  
Jonathan R. Tetlie ◽  
Deirdre Prischmann-Voldseth ◽  
Brent S. Hulke ◽  
Jarrad R. Prasifka

AbstractWild and managed bees are needed to move sunflower (Helianthus annuus L.) pollen, both to create hybrid seed and to encourage high, consistent yields when those hybrids are subsequently grown. Among floral traits that influence bee preference, floret size may be critical, as the depth of the corolla affects the accessibility of nectar. Sampling and observation of inbred maintainer (HA) lines were used to assess variation in floret size, and to measure any effects of floret size on pollinator visitation. Among 100 inbreds sampled, there was significant variation among the lines, with floret lengths of 6.8–9.9 mm. Floret length, measured before anthesis, was closely related to corolla depth during anthesis and was consistent between 2 years (environments). Pollinator observations on 30 inbred lines showed floret size explained a majority (52%) of the variation in wild bee preference, with a reduction in floret length of 2 mm more than doubling pollinator activity. Though honey bee, Apis mellifera L., colonies were located ≈ 60 m from the plots, near-zero honey bee activity in the sunflowers precluded an assessment of how strongly this managed pollinator is affected by floret length. Production of inbreds and hybrids with smaller florets could enhance sunflower pollination, but genetic markers for floret size are needed to facilitate selection, and an understanding of potential trade-offs also is required. Information on variation and heritability of other traits, such as pollen and nectar rewards, could help explain residual variation in wild bee visitation to sunflowers.


2017 ◽  
Vol 214 ◽  
pp. 312-319 ◽  
Author(s):  
Tibor Bukovinszky ◽  
Joke Verheijen ◽  
Susan Zwerver ◽  
Esther Klop ◽  
Jacobus C. Biesmeijer ◽  
...  

2020 ◽  
Vol 49 (2) ◽  
pp. 502-515 ◽  
Author(s):  
Brianne Du Clos ◽  
Francis A Drummond ◽  
Cynthia S Loftin

Abstract Homogeneous, agriculturally intense landscapes have abundant records of pollinator community research, though similar studies in the forest-dominated, heterogeneous mixed-use landscape that dominates the northeastern United States are sparse. Trends of landscape effects on wild bees are consistent across homogeneous agricultural landscapes, whereas reported studies in the northeastern United States have not found this consistency. Additionally, the role of noncrop habitat in mixed-use landscapes is understudied. We assessed wild bee communities in the mixed-use lowbush blueberry (Vaccinium angustifolium Ait.) production landscape of Maine, United States at 56 sites in eight land cover types across two regional landscapes and analyzed effects of floral resources, landscape pattern, and spatial scale on bee abundance and species richness. Within survey sites, cover types with abundant floral resources, including lowbush blueberry fields and urban areas, promoted wild bee abundance and diversity. Cover types with few floral resources such as coniferous and deciduous/mixed forest reduced bee abundance and species richness. In the surrounding landscape, lowbush blueberry promoted bee abundance and diversity, while emergent wetland and forested land cover strongly decreased these measures. Our analysis of landscape configuration revealed that patch mixing can promote wild bee abundance and diversity; however, this was influenced by strong variation across our study landscape. More surveys at intra-regional scales may lead to better understanding of the influence of mixed-use landscapes on bee communities.


2019 ◽  
Vol 12 (1) ◽  
pp. 293 ◽  
Author(s):  
Monika Egerer ◽  
Jacob Cecala ◽  
Hamutahl Cohen

Across urban environments, vegetated habitats provide refuge for biodiversity. Gardens (designed for food crop production) and nurseries (designed for ornamental plant production) are both urban agricultural habitats characterized by high plant species richness but may vary in their ability to support wild pollinators, particularly bees. In gardens, pollinators are valued for crop production. In nurseries, ornamental plants rarely require pollination; thus, the potential of nurseries to support pollinators has not been examined. We asked how these habitats vary in their ability to support wild bees, and what habitat features relate to this variability. In 19 gardens and 11 nurseries in California, USA, we compared how local habitat and landscape features affected wild bee species abundance and richness. To assess local features, we estimated floral richness and measured ground cover as proxies for food and nesting resources, respectively. To assess landscape features, we measured impervious land cover surrounding each site. Our analyses showed that differences in floral richness, local habitat size, and the amount of urban land cover impacted garden wild bee species richness. In nurseries, floral richness and the proportion of native plant species impacted wild bee abundance and richness. We suggest management guidelines for supporting wild pollinators in both habitats.


2020 ◽  
Vol 49 (3) ◽  
pp. 753-764 ◽  
Author(s):  
Ashley L St. Clair ◽  
Ge Zhang ◽  
Adam G Dolezal ◽  
Matthew E O’Neal ◽  
Amy L Toth

Abstract In the last century, a global transformation of Earth’s surface has occurred due to human activity with extensive agriculture replacing natural ecosystems. Concomitant declines in wild and managed bees are occurring, largely due to a lack of floral resources and inadequate nutrition, caused by conversion to monoculture-based farming. Diversified fruit and vegetable farms may provide an enhanced variety of resources through crops and weedy plants, which have potential to sustain human and bee nutrition. We hypothesized fruit and vegetable farms can enhance honey bee (Hymenoptera: Apidae, Apis mellifera Linnaeus) colony growth and nutritional state over a soybean monoculture, as well as support a more diverse wild bee community. We tracked honey bee colony growth, nutritional state, and wild bee abundance, richness, and diversity in both farm types. Honey bees kept at diversified farms had increased colony weight and preoverwintering nutritional state. Regardless of colony location, precipitous declines in colony weight occurred during autumn and thus colonies were not completely buffered from the stressors of living in a matrix dominated with monocultures. Contrary to our hypothesis, wild bee diversity was greater in soybean, specifically in August, a time when fields are in bloom. These differences were largely driven by four common bee species that performed well in soybean. Overall, these results suggest fruit and vegetable farms provide some benefits for honey bees; however, they do not benefit wild bee communities. Thus, incorporation of natural habitat, rather than diversified farming, in these landscapes, may be a better choice for wild bee conservation efforts.


2013 ◽  
Vol 145 (6) ◽  
pp. 655-667 ◽  
Author(s):  
Amy C. Rutgers-Kelly ◽  
Miriam H. Richards

AbstractTo investigate how bee (Hymenoptera: Apoidea) communities repopulate habitat following severe disturbances, we compared assemblages in new, regenerating landfill sites planted in 2003, recent landfill sites planted in 2000, and control meadows relatively undisturbed for >40 years. All sites were identically sampled using pan traps and sweep netting, from early May to late September 2003, equalising collection effort among sites. In addition, we carried out five-minute aerial net samplings wherever sites contained large patches of wildflowers. We predicted that abundance and diversity of bees would be highest in recent sites and lowest in new sites. This prediction was partially supported: bees were most abundant in recent sites followed by control, then new sites, but species richness was highest (82 species) in recent sites, followed by new sites (67 species), then control (66 species). A randomisation analysis showed that there were more species than expected in new sites and fewer than expected in control sites. Differences in blossom availability likely explain differences in bee abundance and diversity among habitat regeneration levels. Overall, our results suggest that the bee community recolonised newly available sites immediately in the first year and that bee diversity and abundance increased for at least three years, subsequently declining between three and 40 years.


2013 ◽  
Vol 166 ◽  
pp. 94-101 ◽  
Author(s):  
Violette Le Féon ◽  
Françoise Burel ◽  
Rémy Chifflet ◽  
Mickaël Henry ◽  
Agnès Ricroch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document