scholarly journals miR-181c-5p mediates apoptosis of vascular endothelial cells induced by hyperoxemia via ceRNA crosstalk

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jizhi Wu ◽  
Guangqi Zhang ◽  
Hui Xiong ◽  
Yuguang Zhang ◽  
Gang Ding ◽  
...  

AbstractOxygen therapy has been widely used in clinical practice, especially in anesthesia and emergency medicine. However, the risks of hyperoxemia caused by excessive O2 supply have not been sufficiently appreciated. Because nasal inhalation is mostly used for oxygen therapy, the pulmonary capillaries are often the first to be damaged by hyperoxia, causing many serious consequences. Nevertheless, the molecular mechanism by which hyperoxia injures pulmonary capillary endothelial cells (LMECs) has not been fully elucidated. Therefore, we systematically investigated these issues using next-generation sequencing and functional research techniques by focusing on non-coding RNAs. Our results showed that hyperoxia significantly induced apoptosis and profoundly affected the transcriptome profiles of LMECs. Hyperoxia significantly up-regulated miR-181c-5p expression, while down-regulated the expressions of NCAPG and lncRNA-DLEU2 in LMECs. Moreover, LncRNA-DLEU2 could bind complementarily to miR-181c-5p and acted as a miRNA sponge to block the inhibitory effect of miR-181c-5p on its target gene NCAPG. The down-regulation of lncRNA-DLEU2 induced by hyperoxia abrogated its inhibition of miR-181c-5p function, which together with the hyperoxia-induced upregulation of miR-181c-5p, all these significantly decreased the expression of NCAPG, resulting in apoptosis of LMECs. Our results demonstrated a ceRNA network consisting of lncRNA-DLEU2, miR-181c-5p and NCAPG, which played an important role in hyperoxia-induced apoptosis of vascular endothelial injury. Our findings will contribute to the full understanding of the harmful effects of hyperoxia and to find ways for effectively mitigating its deleterious effects.

Oncotarget ◽  
2017 ◽  
Vol 8 (44) ◽  
pp. 76165-76173 ◽  
Author(s):  
Hongping Xu ◽  
Liwei Zhang ◽  
Wei Chen ◽  
Jiazhou Xu ◽  
Ruting Zhang ◽  
...  

1996 ◽  
Vol 270 (6) ◽  
pp. L954-L961 ◽  
Author(s):  
S. J. Elliott

Peroxynitrite (ONOO-) is formed from superoxide (O2-) and .NO. We have previously reported that O2- does not alter endothelial cell Ca2+ signaling. To test whether .NO alters Ca2+ signaling, cells were incubated with the .NO donor, spermine NONOate. Neither spermine NONOate nor S-nitroso-N-acetyl penicillamine (SNAP) altered bradykinin-stimulated Ca2+ signaling. By contrast, 3-morpholinosydnonimine (SIN-1), which generates ONOO- by releasing O2- and .NO essentially in a simultaneous manner, significantly inhibited signaling. Initially, the inhibitory effect of 1 mM SIN-1 was selective toward agonist-stimulated influx of external Ca2+. At later time points, SIN-1 additionally depleted internal stores of releasable Ca2+. When cells were coincubated with SIN-1 plus superoxide dismutase, a technique designed to scavenge O2- and convert SIN-1 to purely an .NO-donor compound, Ca2+ signaling was identical to control. SIN-1C, the inactive metabolite of SIN-1, had no effect on [Ca2+]i. This study demonstrates that exogenously generated ONOO- modulates endothelial cell Ca2+ signaling, suggesting that ONOO- is of biological relevance to vasoregulation.


Sign in / Sign up

Export Citation Format

Share Document