scholarly journals Synthesis and application of [Zr-UiO-66-PDC-SO3H]Cl MOFs to the preparation of dicyanomethylene pyridines via chemical and electrochemical methods

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amir Mohammad Naseri ◽  
Mahmoud Zarei ◽  
Saber Alizadeh ◽  
Saeed Babaee ◽  
Mohammad Ali Zolfigol ◽  
...  

AbstractA metal–organic framework (MOF) with sulfonic acid tags as a novel mesoporous catalyst was synthesized. The precursor of Zr-UiO-66-PDC was synthesized both via chemical and electrochemical methods. Then, zirconium-based mesoporous metal–organic framework [Zr-UiO-66-PDC-SO3H]Cl was prepared by reaction of Zr-UiO-66-PDC and SO3HCl. The structure of [Zr-UiO-66-PDC-SO3H]Cl was confirmed by FT-IR, PXRD, FE-SEM, TEM, BET, EDX, and Mapping analysis. This mesoporous [Zr-UiO-66-PDC-SO3H]Cl was successfully applied for the synthesis of dicyanomethylene pyridine derivatives via condensation of various aldehyde, 2-aminoprop-1-ene-1,1,3-tricarbonitrile and malononitrile. At the electrochemical section, a green electrochemical method has successfully employed for rapid synthesis of the zirconium-based mesoporous metal–organic framework UiO-66-PDC at room temperature and atmospheric pressure. The synthesized UiO-66-PDC has a uniform cauliflower-like structure with a 13.5 nm mean pore diameter and 1081.6 m2 g−1 surface area. The described catalyst [Zr-UiO-66-PDC-SO3H]Cl was also employed for the convergent paired electrochemical synthesis of dihydropyridine derivatives as an environmentally friendly technique under constant current at 1.0 mA cm−2 in an undivided cell. The proposed method proceeds with moderate to good yields for the model via a cooperative vinylogous anomeric based oxidation.

2021 ◽  
Author(s):  
Amir Mohammad Naseri ◽  
Mahmoud Zarei ◽  
Saber Alizadeh ◽  
Saeed Babaee ◽  
Mohammad Ali Zolfigol ◽  
...  

Abstract A metal-organic frameworks (MOFs) with sulfonic acid tags as a novel mesoporous catalyst was synthesized. The precursor of Zr-UiO-66-PDC was synthesized both via chemical and electrochemical methods. Then, zirconium based mesoporous metal-organic framework [Zr-UiO-66-PDC-SO3H]Cl was prepared by reaction of Zr-UiO-66-PDC and SO3HCl. The structure of [Zr-UiO-66-PDC-SO3H]Cl was confirmed by FE-SEM and TEM. This mesoporous [Zr-UiO-66-PDC-SO3H]Cl was successfully applied for synthesis of dicyanomethylene pyridine derivatives via condensation of various aldehyde, 2-aminoprop-1-ene-1,1,3-tricarbonitrile and malononitrile. At the electrochemical section, a green electrochemical method has successfully employed for rapid synthesis of the zirconium based mesoporous metal-organic framework UiO-66-PDC at room temperature and atmospheric pressure. The synthesized UiO-66-PDC has a uniform cauliflower-like structure with 13.5 nm mean pore diameter and 181.6 m2­ g-1 surface area. The described catalyst [Zr-UiO-66-PDC-SO3H]Cl was also employed for the convergent paired electrochemical synthesis of dihydropyridine derivatives as an environmental friendly technique under constant current at 1.0 mA cm-2 in an undivided cell. The proposed method proceeds with moderate to good yields for the model via a cooperative vinylogous anomeric based oxidation.


2019 ◽  
Author(s):  
Timothée Stassin ◽  
Ivo Stassen ◽  
Joao Marreiros ◽  
Alexander John Cruz ◽  
Rhea Verbeke ◽  
...  

A simple solvent- and catalyst-free method is presented for the synthesis of the mesoporous metal-organic framework (MOF) MAF-6 (RHO-Zn(eIm)2) based on the reaction of ZnO with 2-ethylimidazole vapor at temperatures ≤ 100 °C. By translating this method to a chemical vapor deposition (CVD) protocol, mesoporous crystalline films could be deposited for the first time entirely from the vapor phase. A combination of PALS and Kr physisorption measurements confirmed the porosity of these MOF-CVD films and the size of the MAF-6 supercages (diam. ~2 nm), in close agreement with powder data and calculations. MAF-6 powders and films were further characterized by XRD, TGA, SEM, FTIR, PDF and EXAFS. The exceptional uptake capacity of the mesoporous MAF-6 in comparison to the microporous ZIF-8 is demonstrated by vapor-phase loading of a molecule larger than the ZIF-8 windows.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
José María Rivera ◽  
Susana Rincón ◽  
Cherif Ben Youssef ◽  
Alejandro Zepeda

Mesoporous metal-organic framework-5 (MOF-5), with the composition Zn4O(BDC)3, showed a high capacity for the adsorptive removal of Pb(II) from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) system, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The experimental evidence showed that Zn(II) liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II) removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II) removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II) adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.


Adsorption ◽  
2021 ◽  
Author(s):  
Paulo G. M. Mileo ◽  
Diony N. Gomes ◽  
Daniel V. Gonçalves ◽  
Sebastião M. P. Lucena

2012 ◽  
Vol 48 (27) ◽  
pp. 3297 ◽  
Author(s):  
Daqiang Yuan ◽  
Rachel B. Getman ◽  
Zhangwen Wei ◽  
Randall Q. Snurr ◽  
Hong-Cai Zhou

2007 ◽  
Vol 119 (43) ◽  
pp. 8237-8237 ◽  
Author(s):  
Young Kwan Park ◽  
Sang Beom Choi ◽  
Hyunuk Kim ◽  
Kimoon Kim ◽  
Byoung-Ho Won ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document