scholarly journals Resonance Raman enhancement by the intralayer and interlayer electron–phonon processes in twisted bilayer graphene

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. V. O. Moutinho ◽  
G. S. N. Eliel ◽  
A. Righi ◽  
R. N. Gontijo ◽  
M. Paillet ◽  
...  

AbstractTwisted bilayer graphene is a fascinating system due to the possibility of tuning the electronic and optical properties by controlling the twisting angle $$\theta$$ θ between the layers. The coupling between the Dirac cones of the two graphene layers gives rise to van Hove singularities (vHs) in the density of electronic states, whose energies vary with $$\theta$$ θ . Raman spectroscopy is a fundamental tool to study twisted bilayer graphene (TBG) systems since the Raman response is hugely enhanced when the photons are in resonance with transition between vHs and new peaks appear in the Raman spectra due to phonons within the interior of the Brillouin zone of graphene that are activated by the Moiré superlattice. It was recently shown that these new peaks can be activated by the intralayer and the interlayer electron–phonon processes. In this work we study how each one of these processes enhances the intensities of the peaks coming from the acoustic and optical phonon branches of graphene. Resonance Raman measurements, performed in many different TBG samples with $$\theta$$ θ between $$4^{\circ }$$ 4 ∘ and $$16^{\circ }$$ 16 ∘ and using several different laser excitation energies in the near-infrared (NIR) and visible ranges (1.39–2.71 eV), reveal the distinct enhancement of the different phonons of graphene by the intralayer and interlayer processes. Experimental results are nicely explained by theoretical calculations of the double-resonance Raman intensity in graphene by imposing the momentum conservation rules for the intralayer and the interlayer electron–phonon resonant conditions in TBGs. Our results show that the resonant enhancement of the Raman response in all cases is affected by the quantum interference effect and the symmetry requirements of the double resonance Raman process in graphene.

2018 ◽  
Vol 115 (27) ◽  
pp. 6928-6933 ◽  
Author(s):  
Wei Yao ◽  
Eryin Wang ◽  
Changhua Bao ◽  
Yiou Zhang ◽  
Kenan Zhang ◽  
...  

The interlayer coupling can be used to engineer the electronic structure of van der Waals heterostructures (superlattices) to obtain properties that are not possible in a single material. So far research in heterostructures has been focused on commensurate superlattices with a long-ranged Moiré period. Incommensurate heterostructures with rotational symmetry but not translational symmetry (in analogy to quasicrystals) are not only rare in nature, but also the interlayer interaction has often been assumed to be negligible due to the lack of phase coherence. Here we report the successful growth of quasicrystalline 30° twisted bilayer graphene (30°-tBLG), which is stabilized by the Pt(111) substrate, and reveal its electronic structure. The 30°-tBLG is confirmed by low energy electron diffraction and the intervalley double-resonance Raman mode at 1383 cm−1. Moreover, the emergence of mirrored Dirac cones inside the Brillouin zone of each graphene layer and a gap opening at the zone boundary suggest that these two graphene layers are coupled via a generalized Umklapp scattering mechanism—that is, scattering of a Dirac cone in one graphene layer by the reciprocal lattice vector of the other graphene layer. Our work highlights the important role of interlayer coupling in incommensurate quasicrystalline superlattices, thereby extending band structure engineering to incommensurate superstructures.


Author(s):  
G. S. N. Eliel ◽  
M. A. Pimenta ◽  
A. Righi ◽  
C. Fantini ◽  
R. Saito ◽  
...  

2013 ◽  
Vol 175-176 ◽  
pp. 13-17 ◽  
Author(s):  
A. Righi ◽  
P. Venezuela ◽  
H. Chacham ◽  
S.D. Costa ◽  
C. Fantini ◽  
...  

Carbon ◽  
2011 ◽  
Vol 49 (5) ◽  
pp. 1511-1515 ◽  
Author(s):  
D.L. Mafra ◽  
E.A. Moujaes ◽  
S.K. Doorn ◽  
H. Htoon ◽  
R.W. Nunes ◽  
...  

2009 ◽  
Vol 80 (12) ◽  
Author(s):  
Zhenhua Ni ◽  
Lei Liu ◽  
Yingying Wang ◽  
Zhe Zheng ◽  
Lain-Jong Li ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Marcus V. O. Moutinho ◽  
Pedro Venezuela ◽  
Marcos A. Pimenta

When two periodic two-dimensional structures are superposed, any mismatch rotation angle between the layers generates a Moiré pattern superlattice, whose size depends on the twisting angle θ. If the layers are composed by different materials, this effect is also dependent on the lattice parameters of each layer. Moiré superlattices are commonly observed in bilayer graphene, where the mismatch angle between layers can be produced by growing twisted bilayer graphene (TBG) samples by CVD or folding the monolayer back upon itself. In TBG, it was shown that the coupling between the Dirac cones of the two layers gives rise to van Hove singularities (vHs) in the density of electronic states, whose energies vary with θ. The understanding of the behavior of electrons and their interactions with phonons in atomically thin heterostructures is crucial for the engineering of novel 2D devices. Raman spectroscopy has been often used to characterize twisted bilayer graphene and graphene heterostructures. Here, we review the main important effects in the Raman spectra of TBG discussing firstly the appearance of new peaks in the spectra associated with phonons with wavevectors within the interior of the Brillouin zone of graphene corresponding to the reciprocal unit vectors of the Moiré superlattice, and that are folded to the center of the reduced Brillouin Zone (BZ) becoming Raman active. Another important effect is the giant enhancement of G band intensity of TBG that occurs only in a narrow range of laser excitation energies and for a given twisting angle. Results show that the vHs in the density of states is not only related to the folding of the commensurate BZ, but mainly associated with the Moiré pattern that does not necessarily have a translational symmetry. Finally, we show that there are two different resonance mechanisms that activate the appearance of the extra peaks: the intralayer and interlayer electron–phonon processes, involving electrons of the same layer or from different layers, respectively. Both effects are observed for twisted bilayer graphene, but Raman spectroscopy can also be used to probe the intralayer process in any kind of graphene-based heterostructure, like in the graphene/h-BN junctions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuan Da Liao ◽  
Jian Kang ◽  
Clara N. Breiø ◽  
Xiao Yan Xu ◽  
Han-Qing Wu ◽  
...  

Carbon ◽  
2021 ◽  
Author(s):  
Sergio L.L.M. Ramos ◽  
Marcos A. Pimenta ◽  
Ana Champi

Sign in / Sign up

Export Citation Format

Share Document