scholarly journals Microendoscopic calcium imaging of the primary visual cortex of behaving macaques

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mineki Oguchi ◽  
Jiang Jiasen ◽  
Toshihide W. Yoshioka ◽  
Yasuhiro R. Tanaka ◽  
Kenichi Inoue ◽  
...  

AbstractIn vivo calcium imaging with genetically encoded indicators has recently been applied to macaque brains to monitor neural activities from a large population of cells simultaneously. Microendoscopic calcium imaging combined with implantable gradient index lenses captures neural activities from deep brain areas with a compact and convenient setup; however, this has been limited to rodents and marmosets. Here, we developed miniature fluorescent microscopy to image neural activities from the primary visual cortex of behaving macaques. We found tens of clear fluorescent signals from three of the six brain hemispheres. A subset of these neurons showed clear retinotopy and orientation tuning. Moreover, we successfully decoded the stimulus orientation and tracked the cells across days. These results indicate that microendoscopic calcium imaging is feasible and reasonable for investigating neural circuits in the macaque brain by monitoring fluorescent signals from a large number of neurons.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jan C. Frankowski ◽  
Andrzej T. Foik ◽  
Alexa Tierno ◽  
Jiana R. Machhor ◽  
David C. Lyon ◽  
...  

AbstractPrimary sensory areas of the mammalian neocortex have a remarkable degree of plasticity, allowing neural circuits to adapt to dynamic environments. However, little is known about the effects of traumatic brain injury on visual circuit function. Here we used anatomy and in vivo electrophysiological recordings in adult mice to quantify neuron responses to visual stimuli two weeks and three months after mild controlled cortical impact injury to primary visual cortex (V1). We found that, although V1 remained largely intact in brain-injured mice, there was ~35% reduction in the number of neurons that affected inhibitory cells more broadly than excitatory neurons. V1 neurons showed dramatically reduced activity, impaired responses to visual stimuli and weaker size selectivity and orientation tuning in vivo. Our results show a single, mild contusion injury produces profound and long-lasting impairments in the way V1 neurons encode visual input. These findings provide initial insight into cortical circuit dysfunction following central visual system neurotrauma.


2019 ◽  
Author(s):  
Marie Tolkiehn ◽  
Simon R. Schultz

AbstractOrientation tuning in mouse primary visual cortex (V1) has long been reported to have a random or “salt-and-pepper” organisation, lacking the structure found in cats and primates. Laminar in-vivo multi-electrode array recordings here reveal previously elusive structure in the representation of visual patterns in the mouse visual cortex, with temporo-nasally drifting gratings eliciting consistently highest neuronal responses across cortical layers and columns, whilst upward moving gratings reliably evoked the lowest activities. We suggest this bias in direction selectivity to be behaviourally relevant as objects moving into the visual field from the side or behind may pose a predatory threat to the mouse whereas upward moving objects do not. We found furthermore that direction preference and selectivity was affected by stimulus spatial frequency, and that spatial and directional tuning curves showed high signal correlations decreasing with distance between recording sites. In addition, we show that despite this bias in direction selectivity, it is possible to decode stimulus identity and that spatiotemporal features achieve higher accuracy in the decoding task whereas spike count or population counts are sufficient to decode spatial frequencies implying different encoding strategies.Significance statementWe show that temporo-nasally drifting gratings (i.e. opposite the normal visual flow during forward movement) reliably elicit the highest neural activity in mouse primary visual cortex, whereas upward moving gratings reliably evoke the lowest responses. This encoding may be highly behaviourally relevant, as objects approaching from the periphery may pose a threat (e.g. predators), whereas upward moving objects do not. This is a result at odds with the belief that mouse primary visual cortex is randomly organised. Further to this biased representation, we show that direction tuning depends on the underlying spatial frequency and that tuning preference is spatially correlated both across layers and columns and decreases with cortical distance, providing evidence for structural organisation in mouse primary visual cortex.


2018 ◽  
Author(s):  
Annet Glas ◽  
Mark Huebener ◽  
Tobias Bonhoeffer ◽  
Pieter M Goltstein

Miniaturized microscopes are lightweight imaging devices that allow optical recordings from neurons in freely moving animals over the course of weeks. Despite their ubiquitous use, individual neuronal responses measured with these microscopes have not been directly compared to those obtained with established in vivo imaging techniques such as bench-top two-photon microscopes. To achieve this, we performed calcium imaging in mouse primary visual cortex while presenting animals with drifting gratings. We identified the same neurons in image stacks acquired with both microscopy methods and quantified orientation tuning of individual neurons. The response amplitude and signal-to-noise ratio of calcium transients recorded upon visual stimulation were highly correlated between both microscopy methods, although influenced by neuropil contamination in miniaturized microscopy. Tuning properties, calculated for individual orientation tuned neurons, were strongly correlated between imaging techniques. Thus, neuronal tuning features measured with a miniaturized microscope are quantitatively similar to those obtained with a two-photon microscope.


2012 ◽  
Vol 28 (3) ◽  
pp. 791-798 ◽  
Author(s):  
Xiao Y. Wu ◽  
Zong X. Mou ◽  
Wen S. Hou ◽  
Xiao L. Zheng ◽  
Jun P. Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document