scholarly journals Indium-contacted van der Waals gap tunneling spectroscopy for van der Waals layered materials

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dong-Hwan Choi ◽  
Kyung-Ah Min ◽  
Suklyun Hong ◽  
Bum-Kyu Kim ◽  
Myung-Ho Bae ◽  
...  

AbstractThe electrical phase transition in van der Waals (vdW) layered materials such as transition-metal dichalcogenides and Bi2Sr2CaCu2O8+x (Bi-2212) high-temperature superconductor has been explored using various techniques, including scanning tunneling and photoemission spectroscopies, and measurements of electrical resistance as a function of temperature. In this study, we develop one useful method to elucidate the electrical phases in vdW layered materials: indium (In)-contacted vdW tunneling spectroscopy for 1T-TaS2, Bi-2212 and 2H-MoS2. We utilized the vdW gap formed at an In/vdW material interface as a tunnel barrier for tunneling spectroscopy. For strongly correlated electron systems such as 1T-TaS2 and Bi-2212, pronounced gap features corresponding to the Mott and superconducting gaps were respectively observed at T = 4 K. We observed a gate dependence of the amplitude of the superconducting gap, which has potential applications in a gate-tunable superconducting device with a SiO2/Si substrate. For In/10 nm-thick 2H-MoS2 devices, differential conductance shoulders at bias voltages of approximately ± 0.45 V were observed, which were attributed to the semiconducting gap. These results show that In-contacted vdW gap tunneling spectroscopy in a fashion of field-effect transistor provides feasible and reliable ways to investigate electronic structures of vdW materials.

2017 ◽  
Vol 19 (15) ◽  
pp. 9872-9878 ◽  
Author(s):  
Hrishikesh Bhunia ◽  
Abhijit Bar ◽  
Abhijit Bera ◽  
Amlan J. Pal

Gapless edge-states with a Dirac point below the Fermi energy and band-edges at the interior observed in 2D topological insulators.


2014 ◽  
Vol 28 (31) ◽  
pp. 1450225 ◽  
Author(s):  
Yang Gao ◽  
Kai-He Ding

We present a theoretic study on scanning tunneling spectroscopy (STS) of a magnetic adatom on graphene. Three typical configurations of adatoms on graphene are considered explicitly: the adatom is on the top of a carbon atom (TC), in a substitutional site (SC), or above the center of the honeycomb hexagon (HC). Based on the nonequilibrium Green's function method, we derive the local density of state (LDOS) for the adatom and the differential conductance through the scanning tunneling microscopy (STM) device. Our results show that in comparison with the cases of the TC and SC, there exists an anomalous broadening of the local adatom energy level in the HC, which pushes the adatom energy to first cross the Fermi level, leading to the appearance of an antiresonance in the LDOS due to the interference between the Kondo resonance and the broadened adatom level. Correspondingly, the bias dependence of the differential conductance in the HC exhibits a more asymmetric sharp Kondo peak pinned to the gate voltage, and its height still remains significantly large compared to that for the other two cases. Additionally, with decreasing the gate voltage, the Kondo peak in the differential conductance gradually decays, and eventually vanishes in the absence of the gate voltage.


2016 ◽  
Vol 18 (33) ◽  
pp. 23231-23237 ◽  
Author(s):  
Ahmed Naitabdi ◽  
François Rochet ◽  
Stéphane Carniato ◽  
Fabrice Bournel ◽  
Jean-Jacques Gallet

We have measured the differential conductance of the triethylamine molecule (N(CH2CH3)3) adsorbed on Si(001)-2 × 1 at room temperature using scanning tunneling spectroscopy.


2003 ◽  
Vol 771 ◽  
Author(s):  
M. Kemerink ◽  
S.F. Alvarado ◽  
P.M. Koenraad ◽  
R.A.J. Janssen ◽  
H.W.M. Salemink ◽  
...  

AbstractScanning-tunneling spectroscopy experiments have been performed on conjugated polymer films and have been compared to a three-dimensional numerical model for charge injection and transport. It is found that field enhancement near the tip apex leads to significant changes in the injected current, which can amount to more than an order of magnitude, and can even change the polarity of the dominant charge carrier. As a direct consequence, the single-particle band gap and band alignment of the organic material can be directly obtained from tip height-voltage (z-V) curves, provided that the tip has a sufficiently sharp apex.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Kuanysh Zhussupbekov ◽  
Lida Ansari ◽  
John B. McManus ◽  
Ainur Zhussupbekova ◽  
Igor V. Shvets ◽  
...  

AbstractThe properties and performance of two-dimensional (2D) materials can be greatly affected by point defects. PtTe2, a 2D material that belongs to the group 10 transition metal dichalcogenides, is a type-II Dirac semimetal, which has gained a lot of attention recently due to its potential for applications in catalysis, photonics, and spintronics. Here, we provide an experimental and theoretical investigation of point defects on and near the surface of PtTe2. Using scanning tunneling microscopy and scanning tunneling spectroscopy (STS) measurements, in combination with first-principle calculations, we identify and characterize five common surface and subsurface point defects. The influence of these defects on the electronic structure of PtTe2 is explored in detail through grid STS measurements and complementary density functional theory calculations. We believe these findings will be of significance to future efforts to engineer point defects in PtTe2, which is an interesting and enticing approach to tune the charge-carrier mobility and electron–hole recombination rates, as well as the site reactivity for catalysis.


Author(s):  
Sherif Abdulkader Tawfik ◽  
Tim Gould ◽  
Catherine Stampfl ◽  
Michael J. Ford

Sign in / Sign up

Export Citation Format

Share Document