scholarly journals A machine learning framework for predicting drug–drug interactions

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suyu Mei ◽  
Kun Zhang

AbstractUnderstanding drug–drug interactions is an essential step to reduce the risk of adverse drug events before clinical drug co-prescription. Existing methods, commonly integrating heterogeneous data to increase model performance, often suffer from a high model complexity, As such, how to elucidate the molecular mechanisms underlying drug–drug interactions while preserving rational biological interpretability is a challenging task in computational modeling for drug discovery. In this study, we attempt to investigate drug–drug interactions via the associations between genes that two drugs target. For this purpose, we propose a simple f drug target profile representation to depict drugs and drug pairs, from which an l2-regularized logistic regression model is built to predict drug–drug interactions. Furthermore, we define several statistical metrics in the context of human protein–protein interaction networks and signaling pathways to measure the interaction intensity, interaction efficacy and action range between two drugs. Large-scale empirical studies including both cross validation and independent test show that the proposed drug target profiles-based machine learning framework outperforms existing data integration-based methods. The proposed statistical metrics show that two drugs easily interact in the cases that they target common genes; or their target genes connect via short paths in protein–protein interaction networks; or their target genes are located at signaling pathways that have cross-talks. The unravelled mechanisms could provide biological insights into potential adverse drug reactions of co-prescribed drugs.

2021 ◽  
Author(s):  
Suyu Mei ◽  
Kun Zhang

Abstract Understanding drug-drug interaction is an essential step to reduce the risk of adverse drug events before clinical drug co-prescription. Existing methods commonly integrate multiple heterogeneous data sources to increase model performance but result in a high model complexity. To elucidate the molecular mechanisms behind drug-drug interactions and reserve rational biological interpretability is a major concern in computational modeling. In this study, we propose a simple representation of drug target profiles to depict drug pairs, based on which an l2-regularized logistic regression model is built to predict drug-drug interactions. In addition, we develop several statistical metrics to measure the communication intensity, interaction efficacy and action range between two drugs in the context of human protein-protein interaction networks and signaling pathways. Cross validation and independent test show that the simple feature representation via drug target profiles is effective to predict drug-drug interactions and outperforms the existing data integration methods. Statistical results show that two drugs easily interact when they target common genes, or their target genes communicate with each other via short paths in protein-protein interaction networks or through cross-talks between signaling pathways. The unravelled mechanisms provide biological insights into potential pharmacological risks of known drug-drug interactions and drug target genes.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
L. F. Signorini ◽  
T. Almozlino ◽  
R. Sharan

Abstract Background ANAT is a Cytoscape plugin for the inference of functional protein–protein interaction networks in yeast and human. It is a flexible graphical tool for scientists to explore and elucidate the protein–protein interaction pathways of a process under study. Results Here we present ANAT3.0, which comes with updated PPI network databases of 544,455 (human) and 155,504 (yeast) interactions, and a new machine-learning layer for refined network elucidation. Together they improve network reconstruction to more than twofold increase in the quality of reconstructing known signaling pathways from KEGG. Conclusions ANAT3.0 includes improved network reconstruction algorithms and more comprehensive protein–protein interaction networks than previous versions. ANAT is available for download on the Cytoscape Appstore and at https://www.cs.tau.ac.il/~bnet/ANAT/.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yanghe Feng ◽  
Qi Wang ◽  
Tengjiao Wang

The identification and validation of drug targets are crucial in biomedical research and many studies have been conducted on analyzing drug target features for getting a better understanding on principles of their mechanisms. But most of them are based on either strong biological hypotheses or the chemical and physical properties of those targets separately. In this paper, we investigated three main ways to understand the functional biomolecules based on the topological features of drug targets. There are no significant differences between targets and common proteins in the protein-protein interactions network, indicating the drug targets are neither hub proteins which are dominant nor the bridge proteins. According to some special topological structures of the drug targets, there are significant differences between known targets and other proteins. Furthermore, the drug targets mainly belong to three typical communities based on their modularity. These topological features are helpful to understand how the drug targets work in the PPI network. Particularly, it is an alternative way to predict potential targets or extract nontargets to test a new drug target efficiently and economically. By this way, a drug target’s homologue set containing 102 potential target proteins is predicted in the paper.


2017 ◽  
Author(s):  
Tom Hiscock

AbstractBiological systems rely on complex networks, such as transcriptional circuits and protein-protein interaction networks, to perform a variety of functions e.g. responding to stimuli, directing cell fate, or patterning an embryo. Mathematical models are often used to ask: given some network, what function does it perform? However, we often want precisely the opposite i.e. given some circuit – either observedin vivo, or desired for some engineering objective – what biological networks could execute this function? Here, we adapt optimization algorithms from machine learning to rapidly screen and design gene circuits capable of performing arbitrary functions. We demonstrate the power of this approach by designing circuits (1) that recapitulate importantin vivophenomena, such as oscillators, and (2) to perform complex tasks for synthetic biology, such as counting noisy biological events. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet.


Sign in / Sign up

Export Citation Format

Share Document