A Multiple-Bands Metamaterial Absorber Based in X, Ku and K-Band

Author(s):  
Muhammad Fahim Zafar ◽  
Usman Masud

Abstract Developing a highly efficient and multiple-bands metamaterial absorber is a hot issue in recent era. In this paper, A multiple-bands metamaterial absorber has been presented which is based in X, Ku and K-band. Firstly, we have designed two single layer basic unit cell of X-shape and cross-shape, then they are arranged in the multi-layers structure form for the purpose of obtaining multiple- bands and wide band absorption. The proposed absorber is able to work in multiple bands because it has six peaks in the frequency range of 8–24 GHz with having near perfect absorption. Moreover, the sixth peak has a wideband absorption which is 2.93 GHz. Furthermore, the proposed absorber is also tested for polarization insensitivity and also for oblique incidence. Absorption was found polarization insensitive with almost perfect absorption.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Chen Han ◽  
Renbin Zhong ◽  
Zekun Liang ◽  
Long Yang ◽  
Zheng Fang ◽  
...  

This paper reports an independently tunable graphene-based metamaterial absorber (GMA) designed by etching two cascaded resonators with dissimilar sizes in the unit cell. Two perfect absorption peaks were obtained at 6.94 and 10.68 μm with simple single-layer metal-graphene metamaterials; the peaks show absorption values higher than 99%. The mechanism of absorption was analyzed theoretically. The independent tunability of the metamaterial absorber (MA) was realized by varying the Fermi level of graphene under a set of resonators. Furthermore, multi-band and wide-band absorption were observed by the proposed structure upon increasing the number of resonators and resizing them in the unit cell. The obtained results demonstrate the multipurpose performance of this type of absorber and indicate its potential application in diverse applications, such as solar energy harvesting and thermal absorbing.


2016 ◽  
Vol 12 (2) ◽  
pp. 4204-4212 ◽  
Author(s):  
Maheshwar Sharon ◽  
Ritesh Vishwakarma ◽  
Abhijeet Rajendra Phatak ◽  
Golap Kalita ◽  
Nallin Sharma ◽  
...  

Corn cob, an agricultural waste, is paralyzed at different temperatures (700oC, 800oC and 900oC). Microwave absorption of carbon in the frequency range of 2 GHz to 8 GHz is reported. Carbon activated  with 5%  nickel nitrate showed more than 90% absorption of microwave in the frequency range from 6 GHz to 8 GHz, while carbon activated  with 10% Nickel nitrate treated corn cob showed 90% absorption  in the frequency range of 2.5 GHz to 5 GHz. Carbon showing the best absorption are characterized by XRD, Raman spectra and SEM . It is suggested that corn cob treatment   alone with KOH did not improve the microwave absorption, whereas treatment along with nickel nitrate improved the absorption property much better. It is proposed that treatment with nickel nitrate helps in creating suitable pores in carbon   which improved the absorption behavior because while treating carbon with 1N HCl helps to leach out nickel creating equivalent amount of pores in the carbon.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1954 ◽  
Author(s):  
Can Cao ◽  
Yongzhi Cheng

In this paper, a plasmonic perfect absorber (PPA) based on a silicon nanorod resonator (SNRR) for visible light is proposed and investigated numerically. The proposed PPA is only a two-layer nanostructure consisting of a SNRR periodic array and metal substrate. The perfect absorption mainly originates from excitation of the localized surface plasmon resonance (LSPR) mode in the SNRR structure. The absorption properties of this design can be adjusted by varying the radius (r) and height (h) of the SNRR structure. What is more, the stronger quad-band absorption can be achieved by combing four different radius of the SNRR in one period as a super unit-cell. Numerical simulation indicates that the designed quad-band PPA can achieve the absorbance of 99.99%, 99.8%, 99.8%, and 92.2% at 433.5 THz, 456 THz, 482 THz, and 504.5 THz, respectively. Further simulations show that the proposed PPA is polarization-insensitive for both transverse electric (TE) and transverse magnetic (TM) modes. The proposed PPA can be a desirable candidate for some potential applications in detecting, sensing, and visible spectroscopy.


2020 ◽  
Vol 2 (6) ◽  
Author(s):  
Prakash Ranjan ◽  
Chetan Barde ◽  
Arvind Choubey ◽  
Rashmi Sinha ◽  
Santosh Kumar Mahto

2011 ◽  
Vol 239-242 ◽  
pp. 1260-1264
Author(s):  
Wei Wei Ji ◽  
Tao Wang ◽  
Yan Nie ◽  
Rong Zhou Gong

Based on the impedance matching and electromagnetic resonant characteristic of composite materials, we present a single-layer metamaterial absorber consisting of arch copper loop and substrate FR-4, of which the resonant frequency depended on the loop’s geometry perimeter. By combining resonant loops with different dimensions together, we can achieve multi-band absorption. The standard finite difference time domain method was used to calculate the magnitudes of reflectance, and then the induced surface current and power loss distributions were demonstrated to analyze the insight physical picture of the multi-band resonant feature. By optimizing the simulation results, the absorptivities of two absorption peaks are all above 98% when the number of copper loops is two, 95% for three absorption peaks of three loops, and 87% for four absorption peaks of four loops.


Author(s):  
M.M. Gajibo ◽  
M. K. A. Rahim ◽  
N. A. Murad ◽  
O. Ayop ◽  
H.A. Majid ◽  
...  

<span>A metamaterial structure capable of operating as a wide band absorber as well as an AMC reflector is presented in this report. A microstrip patch copper was used as a switch to switch between the two modes. An FR4 substrate was used and the incidental wave angles were varied from 0<sup>0</sup> to 60<sup>0</sup>. Simulations results showed that the absorber was able achieve 96% absorption at 13.05 GHz and 100% absorption at 10.00 GHz and 12.00 GHz. Furthermore, it archived over 85% absorption for the entire X-band frequency range. The AMC reflector also was able to achieve 84.97%, 82.88% and 78.69% for incident angles 0<sup>0</sup>, 20<sup>0 </sup>and 40<sup>0</sup> respectively. Unfortunately, the structure is polarization sensitive.</span>


2018 ◽  
Vol 32 (25) ◽  
pp. 1850275 ◽  
Author(s):  
Emin Ünal ◽  
Mehmet Bağmancı ◽  
Muharrem Karaaslan ◽  
Oguzhan Akgol ◽  
Cumali Sabah

A new metamaterial absorber (MA) having distinct properties than those given in the literature is investigated. Although several designs have been studied for achieving absorption characteristics in single-band, dual-band and multiple bands within the whole spectrum of solar light, there has been limited number of researches examining the broadband MA in the visible light section of the spectrum. The designed structure is composed of the combination of three layers having different thicknesses including a metallic substrate, dielectric and a metal layer. Due to the sandwich-like structure, it can support the plasmonic resonance. The proposed structure, which provides a maximum absorption level of 99.42% at 579.26 THz, has a high absorption rate of 99% between the frequency band 545 and 628 THz. Numerical results indicate that the proposed structure has perfect absorption which is greater than 90.98% through the whole working frequency band. The dependency of the designed structure on the polarization angle is investigated for different incident angles with TE and TM polarizations as well as the TEM mode. In addition to its potential applications such as solar cells and cloaking, the designed structure can also be considered as a color sensor and an optical frequency sensor.


2018 ◽  
Vol 7 (2) ◽  
pp. 25-27
Author(s):  
M. C. Tran ◽  
T. T. H. Phuong

This paper presents a study of a novel absorber structure based on two-dielectric-layers, two perfect absorption frequency bands at K band (f1 = 26.5 GHz and f2 = 28.6 GHz) go under observance. The study of the dependence of absorption and frequency on relative distance between the layers of material and the material structure parameters are discussed. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Lutful Hakim ◽  
Touhidul Alam ◽  
Ali F. Almutairi ◽  
Mohd Fais Mansor ◽  
Mohammad Tariqul Islam

AbstractPolarization insensitive metamaterial absorbers (MA) are currently very attractive due to their unique absorption properties at different polarization angles. As a result, this type of absorber is widely used in sensing, imaging, energy harvesting, etc. This paper presents the design and characterization of a dual-band polarization-insensitive metamaterial absorber (MA) for K-band applications. The metamaterial absorber consists of two modified split ring resonators with an inner cross conductor to achieve a 90% absorption bandwidth of 400 MHz (21.4–21.8 GHz) and 760 MHz (23.84–24.24 GHz) at transverse electromagnetic (TEM), transverse electric (TE), and transverse magnetic (TM) mode. Polarization insensitivity of different incident angles for TE and TM mode is also investigated, which reveals a similar absorption behavior up to 90°. The metamaterial structure generates single negative (SNG) property at a lower frequency of 21.6 GHz and double negative property (DNG) at an upper frequency of 24.04 GHz. The permittivity and pressure sensor application are investigated for the proposed absorber, which shows its useability in these applications. Finally, a comparison with recent works is also performed to demonstrate the feasibility of the proposed structure for K band application, like sensor, filter, invasive clock, etc.


Sign in / Sign up

Export Citation Format

Share Document