scholarly journals Understanding adsorption geometry of organometallic molecules on graphite

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seungtaek Oh ◽  
Jungyoon Seo ◽  
Giheon Choi ◽  
Hwa Sung Lee

AbstractTo comprehensively investigate the adsorption geometries of organometallic molecules on graphene, Cp*Ru+ fragments as an organometallic molecule is bound on highly oriented pyrolytic graphite and imaged at atomic resolution using scanning tunneling microscopy (STM) (Cp* = pentamethylcyclopentadienyl). Atomic resolution imaging through STM shows that the Cp*Ru+ fragments are localized above the hollow position of the hexagonal structure, and that the first graphene layer adsorbed with the fragments on the graphite redeveloped morphologically to minimize its geometric energy. For a better understanding of the adsorption site and molecular geometry, experimental results are compared with computed calculations for the graphene surface with Cp*Ru+ fragments. These calculations show the adsorption geometries of the fragment on the graphene surface and the relationship between the geometric energy and molecular configuration. Our results provide the chemical anchoring geometry of molecules on the graphene surface, thereby imparting the theoretical background necessary for controlling the various properties of graphene in the future.

2021 ◽  
Author(s):  
Seungtaek Oh ◽  
Jungyoon Seo ◽  
Giheon Choi ◽  
Hwa Sung Lee

Abstract To comprehensively investigate the adsorption geometries and behaviors of organometallic molecules on graphene, Cp*Ru+ fragments as an organometallic molecule is bound on highly oriented pyrolytic graphite and imaged at atomic resolution using scanning tunneling microscopy (STM) (Cp* = pentamethylcyclopentadienyl). Atomic resolution imaging through STM shows that the Cp*Ru+ fragments are localized above the hollow position of the hexagonal structure, and that the graphene surface adsorbed with the fragments redeveloped morphologically to minimize its geometric energy. For a better understanding of the adsorption site and molecular geometry, experimental results are compared with computed calculations for the graphene surface with Cp*Ru+ fragments. These calculations show the adsorption geometries of the fragment on the graphene surface and the relationship between the geometric energy and molecular configuration. Our results provide the chemical anchoring geometry of molecules on the graphene surface, thereby imparting the theoretical background necessary for controlling the electrical/physical properties of graphene in the future.


Author(s):  
Rebecca W. Keller ◽  
Carlos Bustamante ◽  
David Bear

Under ideal conditions, the Scanning Tunneling Microscope (STM) can create atomic resolution images of different kinds of samples. The STM can also be operated in a variety of non-vacuum environments. Because of its potentially high resolution and flexibility of operation, it is now being applied to image biological systems. Several groups have communicated the imaging of double and single stranded DNA.However, reproducibility is still the main problem with most STM results on biological samples. One source of irreproducibility is unreliable sample preparation techniques. Traditional deposition methods used in electron microscopy, such as glow discharge and spreading techniques, do not appear to work with STM. It seems that these techniques do not fix the biological sample strongly enough to the substrate surface. There is now evidence that there are strong forces between the STM tip and the sample and, unless the sample is strongly bound to the surface, it can be swept aside by the tip.


1996 ◽  
Vol 76 (8) ◽  
pp. 1276-1279 ◽  
Author(s):  
A. R. H. Clarke ◽  
J. B. Pethica ◽  
J. A. Nieminen ◽  
F. Besenbacher ◽  
E. Lægsgaard ◽  
...  

2014 ◽  
Vol 10 ◽  
pp. 2783-2788 ◽  
Author(s):  
Stefan-S Jester ◽  
A Vikas Aggarwal ◽  
Daniel Kalle ◽  
Sigurd Höger

Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes – depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer.


1997 ◽  
Vol 51 (12) ◽  
pp. 1896-1904 ◽  
Author(s):  
Kurt G. Vandervoort ◽  
Kristin N. McLain ◽  
David J. Butcher

Scanning tunneling microscopy (STM) was used to elucidate monolayer etch pits that form on highly oriented pyrolytic graphite (HOPG) heated in an electrothermal analyzer. Pits form at elevated temperatures due to reactions between oxygen and exposed carbon edge atoms (defects) and additionally with intraplanar carbon atoms (through abstraction). Samples of HOPG without analyte or matrix modifier were placed in the depression of a pure pyrolytic graphite platform and heated by using standard analysis furnace programs. Under argon stop-flow conditions, pits form in less than a second at atomization temperatures equal to and above 1200 °C. With low argon flow rates (40 mL/min), pits formed at atomization temperatures equal to and greater than 1750 °C in less than a second. Quantitative pit formation rates were used to indicate oxygen partial pressure, which may be as high as ∼ 10−3 atm at 1200 °C. Reaction rates were used to predict surface degradation due to oxygen attack and determine that 1-μm depth normal to the surface would be removed by 200 successive 5-second-period furnace firings at 1200 °C. Implications for increases in surface reactivity and analyte intercalation are discussed.


1997 ◽  
Vol 12 (8) ◽  
pp. 1942-1945 ◽  
Author(s):  
H. J. Gao ◽  
H. X. Zhang ◽  
Z. Q. Xue ◽  
S. J. Pang

Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) investigation of tetracyanoquinodimethane (TCNQ) and the related C60-TCNQ thin films is presented. Periodic molecular chains of the TCNQ on highly oriented pyrolytic graphite (HOPG) substrates were imaged, which demonstrated that the crystalline (001) plane was parallel to the substrate. For the C60-TCNQ thin films, we found that there were grains on the film surface. STM images within the grain revealed that the well-ordered rows and terraces, and the parallel rows in different grains were generally not in the same orientation. Moreover, the grain boundary was also observed. In addition, AFM was employed to modify the organic TCNQ film surface for the application of this type of materials to information recording and storage at the nanometer scale. The nanometer holes were successfully created on the TCNQ thin film by the AFM.


Sign in / Sign up

Export Citation Format

Share Document