scholarly journals Evaluation of fish feeder manufactured from local raw materials

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
El-Sayed Khater ◽  
Adel Bahnasawy ◽  
Osama Morsy

AbstractAn automatic feeder for fish feeding was manufactured and evaluated successively. Feed pellet size, air flow rate and feeder screw speed were the most important factors affecting the performance and efficiency of the automatic feeder. It was tested at 3 sizes of pellets (1, 2 and 3 mm), 3 air flow rates (10, 15 and 20 m3 min−1) and 5 screw speeds (180, 360, 540, 720 and 900 rpm). The automatic feeder productivity, efficiency, specific energy consumption and costs were determined. The obtained results indicated that the automatic feeder productivity increases with increasing feed pellets size, air flow rate and rotational speed of screw treatments under study, the automatic feeder efficiency increased with increasing rotational speed of screw until it reached the highest value at 540 rpm and then remain constant at 720–900 rpm and after that decreased with increasing speed. Meanwhile, the specific energy consumption of automatic feeder decreased with increasing feed pellets size, air flow rate and rotational speed of screw treatments under study. The total cost of using automatic feeder ranged from 0.09 to 0.16 EGP kg−1 ($ = 15.63 EGP) for all treatments under study. This feeder will save time, effort and cost for fish industry.

Author(s):  
Aree Achariyaviriya ◽  
Paradorn Nuthong

In this work, it is presented a study of the effects of drying conditions on the optimal bed thickness of the whole longan. The criteria for evaluation of the drying process are specific energy consumption and drying time which the difference of moisture between top and bottom of drying chamber is less than 10%dry basis. The mathematical model is developed for finding the effects of the drying conditions on the optimal bed thickness. The drying conditions are drying air temperature, specific air flow rate, and fraction of recycled air. Experimental data were compared with the simulated results to verify the model. Furthermore, the sensitivity analysis of the fraction of air recycled, drying air temperature, specific airflow rate, initial moisture content, and bed thickness of longan are study. The results showed that there was good agreement between the simulated drying rate and those experimentally observed. In addition, there was a well agreement with respect to the shapes of the drying air temperature and product temperature profiles. From the simulated results, the optimal bed thickness of 40 cm, the specific energy consumption of 10.56 MJ/kg-water and drying time of 64.2 h were found. The responsive conditions were drying air temperature of 75°C, the fraction of recycled air of 90%, and the specific air flow rate of 73 kg-dry air/h-kg dry longan.


2021 ◽  
Vol 58 (02) ◽  
pp. 112-123
Author(s):  
Rakesh Kumar Raigar ◽  
Hari Niwas Mishra

Roasting is one of the thermo-mechanical operation in cereals and oilseeds processing. Low-capacity machine for mechanisation of roasting is necessary for small-scale processing. A conduction-type motorised rotary roaster (8 kg per batch) was designed and developed for roasting of peanuts. Performance of the roaster was evaluated in terms of moisture loss, scorched kernels, and specific energy consumption for accelerated roasting of peanut. The effects of different roasting conditions were studied to determine the optimum operating conditions of the roaster. Quality indices of peanuts as moisture loss (kg.kg-1), scorched kernel (%), and specific energy consumption (kWh.kg-1) were dependent on the operating conditions. The optimum value of moisture loss (0.041± 0.003 kg.kg-1), scorched kernel (0.93± 0.0.004 % ), and specific energy consumption (0.185 ± 0.005 kWh.kg-1) were obtained at roasting temperature of 170°C, roasting time of 15 min, and rotational speed of 20 rpm for roasting peanut. The roasting characteristics of peanut decreased linearly with increase in the temperature and time; and decrease in the rotational speed. The inferior quality parameters were observed at higher temperatures, speed and medium time of roasting. The study indicated optimum roasting temperature of peanut to be 170°C, and further increase in the process temperature had undesirable effects on roasted peanut quality due to high loss of moisture.


Author(s):  
Xunan Liu ◽  
Changqing Du ◽  
Mingxi Liu

The cutting head is the key component of a road header in tunnel excavation, where the concept of the spiral angle design directly affects the comprehensive performance, which includes cutting resistance, fluctuation coefficient, specific energy consumption, cutting head stress distribution, and so on. Based on the theory of rock-breaking by pick, the mechanical model of pick was established, and the three-dimensional force vector in the WORKBENCH coordinate system was determined. The 3D model of the proposed cutting head was designed using PRO/E and the static simulation was carried out using WORKBENCH, while the stress information of key parts was obtained. Furthermore, a four-dimensional fitting method was used to investigate the influence of the horizontal swing speed, rotational speed, and spiral angle of the cutting head, on the stress of the cutting head assembly. By setting the horizontal swing speed, rotational speed and the spiral angle as design variables and the specific energy consumption, total cutting resistance, fluctuation coefficient, power consumption, and stress on cutting head assembly as the objective function; the multiobjective optimization function of the cutting head was established. By using genetic algorithm, the complex problem has been solved. The solution of this optimization function provides the horizontal swing speed, rotational speed, and spiral angle values, where the optimal performance is achieved, in the aspect of energy consumption, cutting resistance, fluctuation coefficient, cutting power, and cutting motor power. This method provides solid guidance and is a great reference in spiral angle design and optimization.


2020 ◽  
Author(s):  
Muhammad Irfan Dzaky ◽  
Engkos Achmad Kosasih ◽  
Ahmad Zikri ◽  
Salsabil Dwikusuma Prasetyo ◽  
Muhammad Badra Shidqi ◽  
...  

2019 ◽  
Vol 116 ◽  
pp. 00033
Author(s):  
Michał Karpuk

The article presents an optimization calculus of variations of fan energy consumption in ventilation and (or) air-conditioning systems. It defines an air flow rate function that depends on the time of operation in the defined room size, starting conditions and the function of hazardous substances emission rate in the room. The differential form of air flow rate dependence on density of hazardous substances allows to establish a connection between air pollution in the room and a fan air flow rate, i.e. fan energy consumption. Creating a fan energy model experiment in the room in different conditions allows to minimize energy consumption to 5–30% depending on existing conditions.


1998 ◽  
Vol 38 (3) ◽  
pp. 1-6 ◽  
Author(s):  
Martin R. Wagner ◽  
H. Johannes Pöpel

The main factors of fine bubble aeration systems in uniform arrangement in clean water are the air flow rate, the depth of submergence of the diffusers, and the diffuser density. While the influence of the air flow rate on the oxygen transfer parameters is known, knowledge of the influence of the depth of submergence and the diffuser density on the specific oxygen transfer efficiency SOTE [%/m] and on the specific oxygen absorption SOA [g/m3·m at STP] is very limited. Both parameters are of great importance in dimensioning fine bubble aeration systems. Therefore, a literature review was conducted to show the influence of the diffuser submergence and density and the type of blower on oxygen transfer and aeration efficiency. The main review results are, that higher values of specific oxygen absorption can be obtained at higher diffuser density; secondly, the volumetric oxygen transfer rate VOTR [g/m3·h] is higher with increasing depth of submergence at the same air flow rate. Also it can be stated that with greater depth of submergence the specific oxygen absorption [g/m3·m at STP] is reduced. Dependent on the air flow rate and the pressure head, the energy consumption [Wh/m3·m at STP] of the blowers used in wastewater treatment plants is different. For example, the energy consumption varies from 4.3 [Wh/m3·m at STP] (positive displacement blower) to 3.0 [Wh/m3·m at STP] (turbo-compressors) at a pressure of 10 m and an air flow rate of 5,000 m3/h at STP. From the results of the literature review the following conclusions can be drawn: (1) High specific oxygen absorption values (SOA) [g/m3·m at STP] can be achieved applying shallow tanks, high diffuser densities and low specific air flow rates; (2) High aeration efficiencies (AE) [kg/kWh] can be obtained by applying high volumetric oxygen transfer rates and adequate selection of the blowers used at the wastewater treatment plants.


Author(s):  
Naseer Ahmad ◽  
Anwar Khalil Sheikh ◽  
Mostafa Elshafie ◽  
Hussain Al-Qahtani

This work is related to the design and development of instrumentation, data acquisition and graphical user interface of Photovoltaic driven Reverse Osmosis system for monitoring and performance evaluation purposes. Installed PV system comprises of 12 PV panels, trackers, batteries and inverter whereas RO system is equipped with pre filters, pumps, energy recovery devices and filtration membranes. Proper instrumentation is carried out in PV system to measure the irradiation, temperatures, voltage and current at various points. Moreover various sensors are used to measure the pressures, flows, salinities at RO unit. Signal conditioning circuits are designed to adjust sensor output signals for computer interface. A simple moving average filter is used to suppress the measurement noise. The experimental investigation of PVRO system is carried out by using LabVIEW interface capabilities. The developed system reveals and stores the pronounced impact of measured variables on the PV output power and specific energy consumption of the RO filtration system. The online data display in multi-scale window frame is very informative for system operation and analysis. During the experimental run of PVRO system using the developed DAQ system, the PV system generated 7.5kWh of energy during the whole day operation. Feed water having 7100ppm salinity and its flow rate was set to 850 lit/hour by adjusting the RPM of the high pressure pump. Clean water flow rate is recorded to be at 465 lit/hour having salinity of 115 ppm during the RO operation. Specific energy consumption of RO system comes out to be 2.083kWh/m3 for 7100ppm salinity of feed water.


2010 ◽  
Vol 20 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Shengwei Wang ◽  
Zhongwei Sun ◽  
Yongjun Sun ◽  
Na Zhu

This paper presents a ventilation control strategy for multi-zone variable air volume (VAV) air-conditioning systems; integrating the sequential split-range control strategy for air-handing units with an aim to optimise the fresh air flow rate by compromising the indoor air quality and energy consumption. In this strategy, a CO2 -based adaptive demand-controlled ventilation scheme would employ a dynamic multi-zone ventilation equation for multi-zone air-conditioning systems, in which a CO2-based dynamic occupancy detection scheme would be used for online occupancy detection. The strategy would identify the critical zones online, and fully consider the outdoor air demand of critical zones, while, a model-based fresh air flow rate optimal control scheme is employed for VAV air-conditioning systems with the primary air handling units. An adaptive optimisation algorithm would be used for optimising the fresh air flow rate to minimise the energy consumption. The energy saving potentials in the Hong Kong climate condition by optimising fresh air ventilation and the practical implementation of the control strategy are also discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document