scholarly journals The impact of network topological structures on systematic technology adoption and carbon emission reduction

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huayi Chen ◽  
Huai-Long Shi

AbstractThis paper investigates how the topological structure of the technological spillover network among agents affects the adoption of a new clean technology and the reduction of system’s carbon emissions. Through building a systematic technology adoption model with technological spillover effect among agents from the network perspective, this paper first illustrates how the new technology diffuses from the earlier adopters to the later adopters under different network topological structures. Further, this paper examines how the carbon emission constraints imposed on pilot agents affect the carbon emissions of other agents and the entire system under different network topological structures. Simulation results of our study suggest that, (1) different topological structures of the technological spillover network have great influence on the adoption and diffusion of a new advanced technology; (2) imposing carbon emission constraints on pilot agents can reduce carbon emissions of other agents and thereby the entire system. However, the effectiveness of the carbon emission constraints is also largely determined by the network topological structures. Our study implies that the empirical research of the network topological structure among the participating entities is a pre-requisite to evaluate the real effectiveness of a carbon emission reduction policy from the system perspective.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Author(s):  
Hongxia Sun ◽  
Jie Yang ◽  
Yang Zhong

With the increasingly serious problem of environmental pollution, reducing carbon emissions has become an urgent task for all countries. The cap-and-trade (C&T) policy has gained international recognition and has been adopted by several countries. In this paper, considering the uncertainty of market demand, we discuss the carbon emission reduction and price policies of two risk-averse competitive manufacturers under the C&T policy. The two manufacturers have two competitive behaviors: simultaneous decision making and sequential decision making. Two models were constructed for these behaviors. The optimal decisions, carbon emission reduction rate, and price were obtained from these two models. Furthermore, in this paper the effects of some key parameters on the optimal decision are discussed, and some managerial insights are obtained. The results show that the lower the manufacturers’ risk aversion level is, the higher their carbon emission reduction rate and utilities. As the carbon quota increases, the manufacturers’ optimal carbon reduction rate and utilities increase. Considering consumers’ environmental awareness, it is more beneficial for the government to reduce the carbon quota and motivate manufacturers’ internal enthusiasm for emission reduction. The government can, through macro control of the market, make carbon trading prices increase appropriately and encourage manufacturers to reduce carbon emissions.


2019 ◽  
Vol 118 ◽  
pp. 04014
Author(s):  
Tao Yi ◽  
Mohan Qiu ◽  
Zhengang Zhang ◽  
Song Mu ◽  
Yu Tian

Under the mandatory push of meeting carbon emission reduction commitments proposed in the Paris Agreement, the analysis on the peaking time of China’s carbon emissions deserves enough attention. This paper focuses on the peaking times of total carbon emissions (TCE) and carbon emission intensity (CEI) in the Yangtze River Delta (YRD). According to the development of carbon emissions in YRD and related targets in the 13th Five-Year Plan, the peaking times of TCE and CEI in different scenarios are predicted based on the influence mechanism analysis of carbon emissions in YRD from the perspective of energy, economy and society. Considering the development characteristics of China at this stage, this paper introduces several new indicators such as full-time equivalent of research and development (R&D) personnel and investment in environmental pollution control. Based on the study results, several policy recommendations are put forward to fulfil China’s carbon emission reduction commitments.


2020 ◽  
Vol 12 (16) ◽  
pp. 6498 ◽  
Author(s):  
Fuquan Zhao ◽  
Feiqi Liu ◽  
Han Hao ◽  
Zongwei Liu

The Chinese government has made a commitment to control carbon emissions, and the deployment of renewable energy power generation is considered as an effective solution. In recent years, great effort has been exerted to support the development of renewable energy in China. While, due to fiscal pressures and changes in management policies, related subsidies are diminishing now and energy users are asked to pay for the cost. Regulations about carbon cap and renewable energy consumptions are issued to transfer the responsibility of consuming renewable energy and reducing carbon emissions to energy consumers. A national carbon trading system is set up in China and is under its growth stage. Therefore, this study lists the factors that should be considered by the energy users, analyzes the levelized cost of electricity generated by renewable energy in four cities in China, Beijing, Shanghai, Guangzhou, Wuhan, and compares the results with current carbon prices. Based on the research, under the current status, it is still more cost-efficient for enterprises to buy carbon credits than introduce renewable energies, and great differences among cities are shown due to different natural conditions. Besides, with diminishing subsidies and development of the carbon trading market, the carbon price will gradually reflect the actual value and carbon emission reduction costs will become an important part of enterprise expenditure. In the long term, enterprises should link more factors to carbon emissions, like social responsibility and brand image, instead of only the cost.


2019 ◽  
Vol 11 (16) ◽  
pp. 4387 ◽  
Author(s):  
Lin ◽  
Zhang ◽  
Wang ◽  
Yang ◽  
Shi ◽  
...  

The increasing demand for urban distribution increases the number of transportation vehicles which intensifies the congestion of urban traffic and leads to a lot of carbon emissions. This paper focuses on carbon emission reduction in urban distribution, taking perishable foods as the object. It carries out optimization analysis of urban distribution routes to explore the impact of low carbon policy on urban distribution routes planning. On the basis of analysis of the cost components and corresponding constraints of urban distribution, two optimization models of urban distribution routes with and without carbon emissions cost are constructed. Fuel quantity related to cost and carbon emissions in the model is calculated based on traffic speed, vehicle fuel quantity and passable time period of distribution. Then an improved algorithm which combines genetic algorithm and tabu search algorithm is designed to solve models. Moreover, an analysis of the influence of carbon tax price is also carried out. It is concluded that in the process of urban distribution based on the actual network information, path optimization considering the low carbon factor can effectively reduce the distribution process of CO2, and reduce the total cost of the enterprise and society, thus achieving greater social benefits at a lower cost. In addition, the government can encourage low-carbon distribution by rationally adjusting the price of carbon tax to achieve a higher social benefit.


Author(s):  
Decai Tang ◽  
Yan Zhang ◽  
Brandon J Bethel

The Yangtze River Economic Belt (YREB) is an essential part of China’s goal of reducing its national carbon emissions. Focusing on economic and social development, the development of science and technology, carbon sinks, energy consumption, and carbon emissions, this paper uses “the Technique for Order of Preference by Similarity to Ideal Solution mode” (TOPSIS) and “an obstacle factor diagnosis method” to measure the reduction capacity of each province and municipality of the YREB. Key obstacles to achieving the goal of carbon emission reduction are also identified. The main finding is that the emission reduction capacities of Shanghai, Jiangsu and Zhejiang in China’s east is far greater than that of all other provinces and municipalities, the main obstacle of Shanghai, Jiangsu, and Zhejiang are carbon sinks, energy consumption and carbon emission, and other provinces and municipalities are social and economic development. Taking into consideration those evaluation results and obstacles, paths for carbon emission reduction are delineated through a four-quadrant matrix method with intent to provide suitable references for the development of a low-carbon economy in the YREB.


2021 ◽  
Vol 13 (12) ◽  
pp. 6745
Author(s):  
Malka Nadeeshani ◽  
Thanuja Ramachandra ◽  
Sachie Gunatilake ◽  
Nisa Zainudeen

At present, the world is facing many hurdles due to the adverse effects of climate change and rapid urbanization. A lot of rural lands and villages are merged into cities by citizens, resulting in high carbon emission, especially in the built environment. Besides, the buildings and the construction sector are responsible for high levels of raw material consumption and around 40% of energy- and process-related emissions. Consequently, the interest in defining the carbon footprint of buildings and their components is on the rise. This study assesses the carbon footprint of a green roof in comparison to a conventional roof in a tropical climate with the aim of examining the potential carbon emission reduction by a green roof during its life cycle. A comparative case study analysis was carried out between an intensive green roof and a concrete flat roof located on two recently constructed commercial buildings in the Colombo district of Sri Lanka. Data were collected from interviews, project documents and past literature in addition to on-site data measurements and a comparison of life cycle carbon emissions of the two roof types was carried out. The results revealed that the operational phase has the highest contribution to the carbon footprint of both roof types. In the operational phase, the green roof was found to significantly reduce heat transfer by nearly 90% compared to the concrete flat roof and thereby contributed to an annual operational energy saving of 135.51 kWh/m2. The results further revealed that the life cycle carbon emissions of the intensive green roof are 84.71% lower compared to the conventional concrete flat roof. Hence, this study concludes that the use of green roofs is a suitable alternative for tropical cities for improving the green environment with substantial potential for carbon emission reduction throughout the life cycle of a building.


2020 ◽  
Vol 7 (5) ◽  
pp. 240-250
Author(s):  
Linshan Wang ◽  
Chuanming Liu ◽  
Xi Yang

Carbon emissions trading is one of the important ways to reduce carbon emissions by giving CO2 emission rights a commodity attribute that allows them to trade on the market and to reduce greenhouse gas emissions through the market mechanisms. Based on the inter-provincial panel data from 1997 to 2016, this paper constructs a basic theoretical analysis framework to analyze the carbon emission reduction effects of carbon trading policies, adopts PSM-DID to study the carbon emission reduction effects of carbon trading pilots. This study finds that: (1) The implementation of the carbon trading pilot can promote carbon emission reduction, but the pilot provinces and municipalities have different economic development levels, industrial structure and supporting measures adopted after the implementation of the carbon trading pilot policy, resulting in differences in carbon emission reduction effects between pilot provinces. (2) For the seller of carbon emission rights, carbon emission reduction is achieved through three effects of "market return-inducing", "technical innovation incentive" and "government support"; for the buyer, carbon emission reduction is achieved through three effects of "enterprise cost pressure", "process innovation motivation" and "market guiding". (4) The results of traditional PSM-DID further prove that the carbon trading pilot can significantly reduce CO2 emissions.


2021 ◽  
Vol 13 (21) ◽  
pp. 12137
Author(s):  
Xi Chen ◽  
Zhigang Chen

Dealing with the relationship between environment and economic development is the core issue of China’s sustainable development. At present, China’s economic transformation is urgent, and green finance is being widely concerned. This paper measured the development level of China’s green finance from the perspective of green credit, green securities, green investment, and green insurance. Then, it used a spatial dynamic panel model to empirically test the mechanism of the impact of green finance on carbon emissions with panel data of 30 Chinese provinces from 2005 to 2018. The following can be seen from the results: (1) The development of green finance contributes to carbon emission reduction. (2) The spatial spillover effect of green finance is significant. Specifically, the development of green finance can not only reduce the carbon emissions of the local region but also inhibit that of adjacent areas. (3) The development of green finance indirectly leads to a decrease in carbon emissions by reducing financing constraints and boosting green technology innovation. In order to stimulate the carbon emission reduction effect of green finance to a greater extent, we should further support the development of green finance, reduce the financing constraints of energy-saving and environmental-protection enterprises, and encourage the research and development of green innovative technologies.


2021 ◽  
Vol 13 (17) ◽  
pp. 9822
Author(s):  
Tao Li ◽  
Ang Li ◽  
Yimiao Song

With the proposed target of carbon peak and carbon neutralization, the development and utilization of renewable energy with the goal of carbon emission reduction is becoming increasingly important in China. We used the analytic hierarchy process (ANP) and a variety of MCDM methods to quantitatively evaluate renewable energy indicators. This study measured the sequence and differences of the development and utilization of renewable energy in different regions from the point of view of carbon emission reduction, which provides a new analytical perspective for the utilization and distribution of renewable energy in China and a solution based on renewable energy for achieving the goal of carbon emission reduction as soon as possible. The reliability of the evaluation system was further enhanced by confirmation through a variety of methods. The results show that the environment and carbon dimensions are the primary criteria to evaluate the priority of renewable energy under carbon emission reduction. In the overall choice of renewable energy, photovoltaic energy is the best solution. After dividing regions according to carbon emission intensity and resource endowment, areas with serious carbon emissions are suitable for the development of hydropower; areas with sub-serious carbon emissions should give priority to the development of photovoltaic or wind power; high-carbon intensity area I should vigorously develop wind power; high-carbon intensity area II should focus on developing photovoltaic power; second high-carbon intensity areas I and II are suitable for the development of wind power and photovoltaic power; and second high-carbon intensity areas III and IV are the most suitable for hydropower.


Sign in / Sign up

Export Citation Format

Share Document