scholarly journals Parameter-free rendering of single-molecule localization microscopy data for parameter-free resolution estimation

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Adrien C. Descloux ◽  
Kristin S. Grußmayer ◽  
Aleksandra Radenovic

AbstractLocalization microscopy is a super-resolution imaging technique that relies on the spatial and temporal separation of blinking fluorescent emitters. These blinking events can be individually localized with a precision significantly smaller than the classical diffraction limit. This sub-diffraction localization precision is theoretically bounded by the number of photons emitted per molecule and by the sensor noise. These parameters can be estimated from the raw images. Alternatively, the resolution can be estimated from a rendered image of the localizations. Here, we show how the rendering of localization datasets can influence the resolution estimation based on decorrelation analysis. We demonstrate that a modified histogram rendering, termed bilinear histogram, circumvents the biases introduced by Gaussian or standard histogram rendering. We propose a parameter-free processing pipeline and show that the resolution estimation becomes a function of the localization density and the localization precision, on both simulated and state-of-the-art experimental datasets.

Author(s):  
Fabian U. Zwettler ◽  
Sebastian Reinhard ◽  
Davide Gambarotto ◽  
Toby D. M. Bell ◽  
Virginie Hamel ◽  
...  

AbstractExpansion microscopy (ExM) enables super-resolution fluorescence imaging of physically expanded biological samples with conventional microscopes. By combining expansion microscopy (ExM) with single-molecule localization microscopy (SMLM) it is potentially possible to approach the resolution of electron microscopy. However, current attempts to combine both methods remained challenging because of protein and fluorophore loss during digestion or denaturation, gelation, and the incompatibility of expanded polyelectrolyte hydrogels with photoswitching buffers. Here we show that re-embedding of expanded hydrogels enables dSTORM imaging of expanded samples and demonstrate that post-labeling ExM resolves the current limitations of super-resolution microscopy. Using microtubules as a reference structure and centrioles, we demonstrate that post-labeling Ex-SMLM preserves ultrastructural details, improves the labeling efficiency and reduces the positional error arising from linking fluorophores into the gel thus paving the way for super-resolution imaging of immunolabeled endogenous proteins with true molecular resolution.


2020 ◽  
Author(s):  
Magdalena C. Schneider ◽  
Roger Telschow ◽  
Gwenael Mercier ◽  
Montserrat López-Martinez ◽  
Otmar Scherzer ◽  
...  

ABSTRACTSingle molecule localization microscopy (SMLM) has enormous potential for resolving subcellular structures below the diffraction limit of light microscopy: Localization precision in the low digit nanometer regime has been shown to be achievable. In order to record localization microscopy data, however, sample fixation is inevitable to prevent molecular motion during the rather long recording times of minutes up to hours. Eventually, it turns out that preservation of the sample’s ultrastructure during fixation becomes the limiting factor. We propose here a workflow for data analysis, which is based on SMLM performed at cryogenic temperatures. Since molecular dipoles of the fluorophores are fixed at low temperatures, such an approach offers the possibility to use the orientation of the dipole as an additional information for image analysis. In particular, assignment of localizations to individual dye molecules becomes possible with high reliability. We quantitatively characterized the new approach based on the analysis of simulated oligomeric structures. Side lengths can be determined with a relative error of less than 1% for tetramers with a nominal side length of 5 nm, even if the assumed localization precision for single molecules is more than 2 nm.


2021 ◽  
Author(s):  
Jiachuan Bai ◽  
Wei Ouyang ◽  
Manish Kumar Singh ◽  
Christophe Leterrier ◽  
Paul Barthelemy ◽  
...  

Novel insights and more powerful analytical tools can emerge from the reanalysis of existing data sets, especially via machine learning methods. Despite the widespread use of single molecule localization microscopy (SMLM) for super-resolution bioimaging, the underlying data are often not publicly accessible. We developed ShareLoc (https://shareloc.xyz), an open platform designed to enable sharing, easy visualization and reanalysis of SMLM data. We discuss its features and show how data sharing can improve the performance and robustness of SMLM image reconstruction by deep learning.


2016 ◽  
Author(s):  
Hazen P. Babcock ◽  
Xiaowei Zhuang

AbstractThe resolution of super-resolution microscopy based on single molecule localization is in part determined by the accuracy of the localization algorithm. In most published approaches to date this localization is done by fitting an analytical function that approximates the point spread function (PSF) of the microscope. However, particularly for localization in 3D, analytical functions such as a Gaussian, which are computationally inexpensive, may not accurately capture the PSF shape leading to reduced fitting accuracy. On the other hand, analytical functions that can accurately capture the PSF shape, such as those based on pupil functions, can be computationally expensive. Here we investigate the use of cubic splines as an alternative fitting approach. We demonstrate that cubic splines can capture the shape of any PSF with high accuracy and that they can be used for fitting the PSF with only a 2-3x increase in computation time as compared to Gaussian fitting. We provide an open-source software package that measures the PSF of any microscope and uses the measured PSF to perform 3D single molecule localization microscopy analysis with reasonable accuracy and speed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245693
Author(s):  
Magdalena C. Schneider ◽  
Roger Telschow ◽  
Gwenael Mercier ◽  
Montserrat López-Martinez ◽  
Otmar Scherzer ◽  
...  

Single molecule localization microscopy (SMLM) has enormous potential for resolving subcellular structures below the diffraction limit of light microscopy: Localization precision in the low digit nanometer regime has been shown to be achievable. In order to record localization microscopy data, however, sample fixation is inevitable to prevent molecular motion during the rather long recording times of minutes up to hours. Eventually, it turns out that preservation of the sample’s ultrastructure during fixation becomes the limiting factor. We propose here a workflow for data analysis, which is based on SMLM performed at cryogenic temperatures. Since molecular dipoles of the fluorophores are fixed at low temperatures, such an approach offers the possibility to use the orientation of the dipole as an additional information for image analysis. In particular, assignment of localizations to individual dye molecules becomes possible with high reliability. We quantitatively characterized the new approach based on the analysis of simulated oligomeric structures. Side lengths can be determined with a relative error of less than 1% for tetramers with a nominal side length of 5 nm, even if the assumed localization precision for single molecules is more than 2 nm.


2019 ◽  
Vol 10 (18) ◽  
pp. 4914-4922 ◽  
Author(s):  
Qingkai Qi ◽  
Weijie Chi ◽  
Yuanyuan Li ◽  
Qinglong Qiao ◽  
Jie Chen ◽  
...  

Rhodamine spirolactams with adjacent amino groups work as acid-resistant and photoswitchable fluorophores in single-molecule localization super-resolution imaging.


Nanoscale ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 5154-5162 ◽  
Author(s):  
Chen Chen ◽  
Shenfei Zong ◽  
Zhuyuan Wang ◽  
Ju Lu ◽  
Dan Zhu ◽  
...  

Super-resolution imaging and dynamic tracking of cancer-derived exosomes and exosomal miRNAs were realized using single molecule localization microscopy.


Sign in / Sign up

Export Citation Format

Share Document