scholarly journals X-ray scattering from light-driven spin fluctuations in a doped Mott insulator

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yao Wang ◽  
Yuan Chen ◽  
Thomas P. Devereaux ◽  
Brian Moritz ◽  
Matteo Mitrano

AbstractManipulating spin fluctuations with ultrafast laser pulses is a promising route to dynamically control collective phenomena in strongly correlated materials. However, understanding how photoexcited spin degrees of freedom evolve at a microscopic level requires a momentum- and energy-resolved characterization of their nonequilibrium dynamics. Here, we study the photoinduced dynamics of finite-momentum spin excitations in two-dimensional Mott insulators on a square lattice. By calculating the time-resolved resonant inelastic x-ray scattering cross-section, we show that an ultrafast pump above the Mott gap induces a prompt softening of the spin excitation energy, compatible with a transient renormalization of the exchange interaction. While spin fluctuations in a hole-doped system (paramagnons) are well described by Floquet theory, magnons at half filling are found to deviate from this picture. Furthermore, we show that the paramagnon softening is accompanied by an ultrafast suppression of d-wave pairing correlations, indicating a link between the transient spin excitation dynamics and superconducting pairing far from equilibrium.

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Matteo Mitrano ◽  
Yao Wang

Abstract Ultrafast optical pulses are an increasingly important tool for controlling quantum materials and triggering novel photo-induced phase transitions. Understanding these dynamic phenomena requires a probe sensitive to spin, charge, and orbital degrees of freedom. Time-resolved resonant inelastic X-ray scattering (trRIXS) is an emerging spectroscopic method, which responds to this need by providing unprecedented access to the finite-momentum fluctuation spectrum of photoexcited solids. In this Perspective, we briefly review state-of-the-art trRIXS experiments on condensed matter systems, as well as recent theoretical advances. We then describe future research opportunities in the context of light control of quantum matter.


Author(s):  
Y. Cao ◽  
D. G. Mazzone ◽  
D. Meyers ◽  
J. P. Hill ◽  
X. Liu ◽  
...  

Many remarkable properties of quantum materials emerge from states with intricate coupling between the charge, spin and orbital degrees of freedom. Ultrafast photo-excitation of these materials holds great promise for understanding and controlling the properties of these states. Here, we introduce time-resolved resonant inelastic X-ray scattering (tr-RIXS) as a means of measuring the charge, spin and orbital excitations out of equilibrium. These excitations encode the correlations and interactions that determine the detailed properties of the states generated. After outlining the basic principles and instrumentations of tr-RIXS, we review our first observations of transient antiferromagnetic correlations in quasi two dimensions in a photo-excited Mott insulator and present possible future routes of this fast-developing technique. The increasing number of X-ray free electron laser facilities not only enables tackling long-standing fundamental scientific problems, but also promises to unleash novel inelastic X-ray scattering spectroscopies. This article is part of the theme issue ‘Measurement of ultrafast electronic and structural dynamics with X-rays’.


Author(s):  
Eva-Maria Mandelkow ◽  
Eckhard Mandelkow ◽  
Joan Bordas

When a solution of microtubule protein is changed from non-polymerising to polymerising conditions (e.g. by temperature jump or mixing with GTP) there is a series of structural transitions preceding microtubule growth. These have been detected by time-resolved X-ray scattering using synchrotron radiation, and they may be classified into pre-nucleation and nucleation events. X-ray patterns are good indicators for the average behavior of the particles in solution, but they are difficult to interpret unless additional information on their structure is available. We therefore studied the assembly process by electron microscopy under conditions approaching those of the X-ray experiment. There are two difficulties in the EM approach: One is that the particles important for assembly are usually small and not very regular and therefore tend to be overlooked. Secondly EM specimens require low concentrations which favor disassembly of the particles one wants to observe since there is a dynamic equilibrium between polymers and subunits.


Author(s):  
Eva-Maria Mandelkow ◽  
Ron Milligan

Microtubules form part of the cytoskeleton of eukaryotic cells. They are hollow libers of about 25 nm diameter made up of 13 protofilaments, each of which consists of a chain of heterodimers of α-and β-tubulin. Microtubules can be assembled in vitro at 37°C in the presence of GTP which is hydrolyzed during the reaction, and they are disassembled at 4°C. In contrast to most other polymers microtubules show the behavior of “dynamic instability”, i.e. they can switch between phases of growth and phases of shrinkage, even at an overall steady state [1]. In certain conditions an entire solution can be synchronized, leading to autonomous oscillations in the degree of assembly which can be observed by X-ray scattering (Fig. 1), light scattering, or electron microscopy [2-5]. In addition such solutions are capable of generating spontaneous spatial patterns [6].In an earlier study we have analyzed the structure of microtubules and their cold-induced disassembly by cryo-EM [7]. One result was that disassembly takes place by loss of protofilament fragments (tubulin oligomers) which fray apart at the microtubule ends. We also looked at microtubule oscillations by time-resolved X-ray scattering and proposed a reaction scheme [4] which involves a cyclic interconversion of tubulin, microtubules, and oligomers (Fig. 2). The present study was undertaken to answer two questions: (a) What is the nature of the oscillations as seen by time-resolved cryo-EM? (b) Do microtubules disassemble by fraying protofilament fragments during oscillations at 37°C?


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


2014 ◽  
Vol 47 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Zoltán Varga ◽  
András Wacha ◽  
Attila Bóta

Time-resolved synchrotron small-angle X-ray scattering (SAXS) was used to study the structural changes during the osmotic shrinkage of a pharmacologically relevant liposomal drug delivery system. Sterically stabilized liposomes (SSLs) with a diameter of 100 nm and composed of hydrogenated soy phosphocholine, cholesterol and distearoyl-phosphoethanolamine-PEG 2000 prepared in a salt-free buffer were mixed with a buffered 0.3 MNaCl solution using a stopped flow apparatus. The changes in the liposome size and the bilayer structure were followed by using SAXS with a time resolution of 20 ms. A linear decrease in liposome size is observed during the first ∼4 s of the osmotic shrinkage, which reveals a water permeability value of 0.215 (15) µm s−1. The change in the size of the liposomes upon the osmotic shrinkage is also confirmed by dynamic light scattering. After this initial step, broad correlation peaks appear on the SAXS curves in theqrange of the bilayer form factor, which indicates the formation of bi- or oligolamellar structures. Freeze-fracture combined with transmission electron microscopy revealed that lens-shaped liposomes are formed during the shrinkage, which account for the appearance of the quasi-Bragg peaks superimposed on the bilayer form factor. On the basis of these observations, it is proposed that the osmotic shrinkage of SSLs is a two-step process: in the initial step, the liposome shrinks in size, while the area/lipid adapts to the decreased surface area, which is then followed by the deformation of the spherical liposomes into lens-shaped vesicles.


Polymer ◽  
2001 ◽  
Vol 42 (21) ◽  
pp. 8965-8973 ◽  
Author(s):  
Zhi-Gang Wang ◽  
Xuehui Wang ◽  
Benjamin S. Hsiao ◽  
Saša Andjelić ◽  
Dennis Jamiolkowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document