scholarly journals Long-distance coupling and energy transfer between exciton states in magnetically controlled microcavities

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Maciej Ściesiek ◽  
Krzysztof Sawicki ◽  
Wojciech Pacuski ◽  
Kamil Sobczak ◽  
Tomasz Kazimierczuk ◽  
...  

Abstract Coupling of quantum emitters in a semiconductor relies, generally, on short-range dipole-dipole or electronic exchange type interactions. Consistently, energy transfer between exciton states, that is, electron-hole pairs bound by Coulomb interaction, is limited to distances of the order of 10 nm. Here, we demonstrate polariton-mediated coupling and energy transfer between excitonic states over a distance exceeding 2 μm. We accomplish this by coupling quantum well-confined excitons through the delocalized mode of two coupled optical microcavities. Use of magnetically doped quantum wells enables us to tune the confined exciton energy by the magnetic field and in this way to control the spatial direction of the transfer. Such controlled, long-distance interaction between coherently coupled quantum emitters opens possibilities of a scalable implementation of quantum networks and quantum simulators based on solid-state, multi-cavity systems.

2015 ◽  
Vol 11 (1) ◽  
pp. 2927-2949
Author(s):  
Lyubov E. Lokot

In the paper a theoretical study the both the quantized energies of excitonic states and their wave functions in grapheneand in materials with "Mexican hat" band structure dispersion as well as in zinc-blende GaN is presented. An integral twodimensionalSchrödinger equation of the electron-hole pairing for a particles with electron-hole symmetry of reflection isexactly solved. The solutions of Schrödinger equation in momentum space in studied materials by projection the twodimensionalspace of momentum on the three-dimensional sphere are found exactly. We analytically solve an integral twodimensionalSchrödinger equation of the electron-hole pairing for particles with electron-hole symmetry of reflection. Instudied materials the electron-hole pairing leads to the exciton insulator states. Quantized spectral series and lightabsorption rates of the excitonic states which distribute in valence cone are found exactly. If the electron and hole areseparated, their energy is higher than if they are paired. The particle-hole symmetry of Dirac equation of layered materialsallows perfect pairing between electron Fermi sphere and hole Fermi sphere in the valence cone and conduction cone andhence driving the Cooper instability. The solutions of Coulomb problem of electron-hole pair does not depend from a widthof band gap of graphene. It means the absolute compliance with the cyclic geometry of diagrams at justification of theequation of motion for a microscopic dipole of graphene where >1 s r . The absorption spectrums for the zinc-blendeGaN/(Al,Ga)N quantum well as well as for the zinc-blende bulk GaN are presented. Comparison with availableexperimental data shows good agreement.


1997 ◽  
Vol 55 (20) ◽  
pp. 13677-13681 ◽  
Author(s):  
Ikai Lo ◽  
Jih-Chen Chiang ◽  
Shiow-Fon Tsay ◽  
W. C. Mitchel ◽  
M. Ahoujja ◽  
...  

2010 ◽  
Vol 81 (15) ◽  
Author(s):  
Y. D. Jho ◽  
X. Wang ◽  
D. H. Reitze ◽  
J. Kono ◽  
A. A. Belyanin ◽  
...  

Author(s):  
Haiyong Quan ◽  
Zhixiong (James) Guo

Laser energy transfer and molecule-radiation interaction in optical microcavity devices are characterized. The device is operated at whispering-gallery modes, and consists of a microcavity and a micro-waveguide coupled by a sub-micrometer air-gap. Emphases are placed on the influences of microcavity size and waveguide compatibility on the energy transfer and storage capability, on the interactions of foreign molecules with the evanescent radiation field surrounding a resonant microcavity. An optimal gap is found for the considered device configuration where maximum energy storage is achieved. This optimal gap is dependent on the resonance mode as well as the morphology. The Q factor increases exponentially with increasing gap and saturates as the gap approaches the optical wavelength. The influence of molecules attachment is demonstrated and the potential in molecular detection is discussed.


Sign in / Sign up

Export Citation Format

Share Document