scholarly journals Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth

2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Kevin M. Blum ◽  
Jacob C. Zbinden ◽  
Abhay B. Ramachandra ◽  
Stephanie E. Lindsey ◽  
Jason M. Szafron ◽  
...  

Abstract Background Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. Methods Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models. Results Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks. Our models predict that early neotissue accumulation is driven primarily by inflammatory processes in response to the implanted polymeric scaffold, but that turnover becomes progressively mechano-mediated as the scaffold degrades. Using a lamb model, we confirm that early neotissue formation results primarily from the foreign body reaction induced by the scaffold, resulting in an early period of dynamic remodeling characterized by transient TEVG narrowing. As the scaffold degrades, mechano-mediated neotissue remodeling becomes dominant around 26 weeks. After the scaffold degrades completely, the resulting neovessel undergoes growth and remodeling that mimicks native vessel behavior, including biological growth capacity, further supported by fluid–structure interaction simulations providing detailed hemodynamic and wall stress information. Conclusions These findings provide insights into TEVG remodeling, and have important implications for clinical use and future development of TEVGs for children with congenital heart disease.

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 713
Author(s):  
Shu Fang ◽  
Ditte Gry Ellman ◽  
Ditte Caroline Andersen

To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Jonas Rasmussen ◽  
Søren Nielsen Skov ◽  
Ditte Bruus Nielsen ◽  
Ida Lindhardt Jensen ◽  
Marcell Juan Tjørnild ◽  
...  

Author(s):  
Kristin S. Miller ◽  
Brooks V. Udelsman ◽  
Yong-Ung Lee ◽  
Yuji Naito ◽  
Christopher K. Breuer ◽  
...  

The field of vascular tissue engineering continues to advance rapidly, yet there is a pressing need to understand better the time course of polymer degradation and the sequence of cell-mediated matrix deposition and organization. Mounting evidence suggests that cells respond to mechanical perturbations through a process of growth and remodeling (G&R) to establish, maintain, and restore a preferred state of homeostatic stress. Previous computational models utilizing G&R approaches have captured arterial responses to diverse changes in mechanical loading [1, 8, 9]. Recently, a G&R framework was also introduced to account for the kinetics of polymer degradation as well as synthesis and degradation of neotissue constituents [5]. Niklason et al. demonstrated that models of G&R can predict both evolving tissue composition and mechanical behavior after extended periods of in vitro culture of polymer-based tissue-engineered vascular grafts (TEVGs), thus providing insights into the timecourse of neotissue formation and polymer removal. Moreover, they suggest that models of G&R can be powerful tools for the future refinement and optimization of scaffold designs. Nevertheless, such computational models have not yet been developed for examining the formation of neotissue following the implantation of a polymeric TEVG in vivo.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Erica L. Schwarz ◽  
John M. Kelly ◽  
Kevin M. Blum ◽  
Kan N. Hor ◽  
Andrew R. Yates ◽  
...  

AbstractIn the field of congenital heart surgery, tissue-engineered vascular grafts (TEVGs) are a promising alternative to traditionally used synthetic grafts. Our group has pioneered the use of TEVGs as a conduit between the inferior vena cava and the pulmonary arteries in the Fontan operation. The natural history of graft remodeling and its effect on hemodynamic performance has not been well characterized. In this study, we provide a detailed analysis of the first U.S. clinical trial evaluating TEVGs in the treatment of congenital heart disease. We show two distinct phases of graft remodeling: an early phase distinguished by rapid changes in graft geometry and a second phase of sustained growth and decreased graft stiffness. Using clinically informed and patient-specific computational fluid dynamics (CFD) simulations, we demonstrate how changes to TEVG geometry, thickness, and stiffness affect patient hemodynamics. We show that metrics of patient hemodynamics remain within normal ranges despite clinically observed levels of graft narrowing. These insights strengthen the continued clinical evaluation of this technology while supporting recent indications that reversible graft narrowing can be well tolerated, thus suggesting caution before intervening clinically.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2056-P
Author(s):  
JULIE A. KERR-CONTE ◽  
JULIEN THEVENET ◽  
GIANNI PASQUETTI ◽  
PAULINE PETIT ◽  
CLARA CLABAUT ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document