Prolonged therapeutic window associated with pharmacologic blockade of vascular adhesion protein-1 (VAP-1)-related post-ischemic leukocyte adhesion in diabetic, ovariectomized (OVX) female rats given chronic estrogen replacement

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S20-S20
Author(s):  
Dale A Pelligrino ◽  
Luisa Salter-Cid ◽  
Matthew D Linnik ◽  
Hao-Liang Xu
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Ryo Kubota ◽  
Michael J. Reid ◽  
Kuo Lee Lieu ◽  
Mark Orme ◽  
Christine Diamond ◽  
...  

Vascular adhesion protein-1 (VAP-1) is an ectoenzyme that functions as a copper-containing amine oxidase and is involved in leukocyte adhesion at sites of inflammation. Inhibition of VAP-1 oxidative deamination has become an attractive target for anti-inflammatory therapy with demonstrated efficacy in rodent models of inflammation. A previous comparison of purified recombinant VAP-1 from mouse, rat, monkey, and human gene sequences predicted that rodent VAP-1 would have higher affinity for smaller hydrophilic substrates/inhibitors because of its narrower and more hydrophilic active site channel. An optimized in vitro oxidative deamination fluorescence assay with benzylamine (BA) was used to compare inhibition of five known inhibitors in recombinant mouse, rat, and human VAP-1. Human VAP-1 was more sensitive compared to rat or mouse VAP-1 (lowest IC50 concentration) to semicarbazide but was least sensitive to hydralazine and LJP-1207. Hydralazine had a lower IC50 in rats compared to humans, although not significant. However, the IC50 of hydralazine was significantly higher in the rat compared to mouse VAP-1. The larger hydrophobic compounds from Astellas (compound 35c) and Boehringer Ingelheim (PXS-4728A) were hypothesized to have higher binding affinity for human VAP-1 compared to rodent VAP-1 since the channel in human VAP-1 is larger and more hydrophobic than that in rodent VAP-1. Although the sensitivity of these two inhibitors was the lowest in the mouse enzyme, we found no significant differences between mouse, rat, and human VAP-1. Michaelis-Menten kinetics of the small primary amines phenylethylamine and tyramine were also compared to the common marker substrate BA demonstrating that BA had the highest affinity among the substrates. Rat VAP-1 had the highest affinity for all three substrates and mouse VAP-1 had intermediate affinity for BA and phenylethylamine, but tyramine was not a substrate for mouse VAP-1 under these assay conditions. These results suggest that comparing oxidative deamination in mouse and rat VAP-1 may be important if using these species for preclinical efficacy models.


Sci ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 13
Author(s):  
Raine Toivonen ◽  
Sanja Vanhatalo ◽  
Maija Hollmén ◽  
Eveliina Munukka ◽  
Anniina Keskitalo ◽  
...  

Toll-like receptor 5 ligand, flagellin, and vascular adhesion protein 1 (VAP-1) are involved in non-alcoholic fatty liver disease. This study aimed to determine whether VAP-1 mediates flagellin-induced hepatic fat accumulation. The effects of flagellin on adipocyte VAP-1 expression were first studied in vitro. Then, flagellin (100 ng/mouse) or saline was intraperitoneally injected into C57BL/6J (WT) and C57BL/6-Aoc3-/- (VAP-1 KO) mice on a high-fat diet twice a week every 2 weeks for 10 weeks. After that, the effects on inflammation, insulin signaling, and metabolism were studied in liver and adipose tissues. Hepatic fat was quantified histologically and biochemically. Because flagellin challenge increased VAP-1 expression in human adipocytes, we used VAP-1 KO mice to determine whether VAP-1 regulates the inflammatory and metabolic effects of flagellin in vivo. In mice, VAP-1 mediated flagellin-induced inflammation, leukocyte infiltration, and lipolysis in visceral adipose tissue. Consequently, an increased release of glycerol led to hepatic steatosis in WT, but not in KO mice. Flagellin-induced hepatic fibrosis was not mediated by VAP-1. VAP-1 KO mice harbored more inflammation-related microbes than WT mice, while flagellin did not affect the gut microbiota. Our results suggest that by acting on visceral adipose tissue, flagellin increased leukocyte infiltration that induced lipolysis. Further, the released glycerol participated in hepatic fat accumulation. In conclusion, the results describe that gut microbial flagellin through VAP-1 induced hepatic steatosis.


Hepatology ◽  
2010 ◽  
Vol 51 (6) ◽  
pp. 2030-2039 ◽  
Author(s):  
Alexander I. Aspinall ◽  
Stuart M. Curbishley ◽  
Patricia F. Lalor ◽  
Chris J. Weston ◽  
Miroslava Blahova ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Serena Becchi ◽  
Alberto Buson ◽  
Bernard W. Balleine

Abstract Background Changes in dopaminergic neural function can be induced by an acute inflammatory state that, by altering the integrity of the neurovasculature, induces neuronal stress, cell death and causes functional deficits. Effectively blocking these effects of inflammation could, therefore, reduce both neuronal and functional decline. To test this hypothesis, we inhibited vascular adhesion protein 1 (VAP-1), a membrane-bound protein expressed on the endothelial cell surface, that mediates leukocyte extravasation and induces oxidative stress. Method We induced dopaminergic neuronal loss by infusing lipopolysaccharide (LPS) directly into the substantia nigra (SN) in rats and administered the VAP-1 inhibitor, PXS-4681A, daily. Results LPS produced: an acute inflammatory response, the loss of dopaminergic neurons in the SN, reduced the dopaminergic projection to SN target regions, particularly the dorsolateral striatum (DLS), and a deficit in habit learning, a key function of the DLS. In an attempt to protect SN neurons from this inflammatory response we found that VAP-1 inhibition not only reduced neutrophil infiltration in the SN and striatum, but also reduced the associated striatal microglia and astrocyte response. We found VAP-1 inhibition protected dopamine neurons in the SN, their projections to the striatum and promoted the functional recovery of habit learning. Thus, we reversed the loss of habitual actions, a function usually dependent on dopamine release in DLS and sensitive to striatal dysfunction. Conclusions We establish, therefore, that VAP-1 inhibition has an anti-inflammatory profile that may be beneficial in the treatment of dopamine neuron dysfunction caused by an acute inflammatory state in the brain.


Blood ◽  
2009 ◽  
Vol 114 (26) ◽  
pp. 5385-5392 ◽  
Author(s):  
Elina Kivi ◽  
Kati Elima ◽  
Kristiina Aalto ◽  
Yvonne Nymalm ◽  
Kaisa Auvinen ◽  
...  

Abstract Leukocytes migrate from the blood into areas of inflammation by interacting with various adhesion molecules on endothelial cells. Vascular adhesion protein-1 (VAP-1) is a glycoprotein expressed on inflamed endothelium where it plays a dual role: it is both an enzyme that oxidizes primary amines and an adhesin that is involved in leukocyte trafficking to sites of inflammation. Although VAP-1 was identified more than 15 years ago, the counterreceptor(s) for VAP-1 on leukocytes has remained unknown. Here we have identified Siglec-10 as a leukocyte ligand for VAP-1 using phage display screenings. The binding between Siglec-10 and VAP-1 was verified by different adhesion assays, and this interaction was also consistent with molecular modeling. Moreover, the interaction between Siglec-10 and VAP-1 led to increased hydrogen peroxide production, indicating that Siglec-10 serves as a substrate for VAP-1. Thus, the Siglec-10–VAP-1 interaction seems to mediate lymphocyte adhesion to endothelium and has the potential to modify the inflammatory microenvironment via the enzymatic end products.


Sign in / Sign up

Export Citation Format

Share Document