scholarly journals Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines

Leukemia ◽  
2002 ◽  
Vol 16 (4) ◽  
pp. 683-692 ◽  
Author(s):  
MB Miranda ◽  
TF McGuire ◽  
DE Johnson
Blood ◽  
1994 ◽  
Vol 84 (11) ◽  
pp. 3902-3908 ◽  
Author(s):  
Q Shen ◽  
S Chada ◽  
C Whitney ◽  
PE Newburger

We have used the HL-60 and PLB-985 myeloid leukemia cell lines to examine the regulation of expression of the important intracellular antioxidant enzyme, glutathione peroxidase (GSH-Px), during phagocytic cell differentiation in vitro. Induction of differentiation along the monocytic pathway by phorbol ester results in an approximately twofold rise in enzyme activity and a parallel increase in the rate of 75Se incorporation into immunoprecipitable GSH-Px protein. Induction along the granulocytic pathway by dimethyl formamide (DMF) results in similar changes in steady-state enzyme levels and rates of GSH-Px protein synthesis. Steady-state levels of GSH-Px gene transcripts also increase more than twofold, approximately in parallel with the enzyme levels. Nuclear run-on transcription assays of GSH-Px mRNA synthesis show ratios of induced to uninduced transcript levels of 2.24 and 1.59 with phorbol myristate acetate (PMA) induction and DMF, respectively, in HL- 60 cells, and ratios of 1.34 and 3.46 with PMA and DMF, respectively, in PLB-985 cells. Half lives of GSH-Px mRNA are unchanged or slightly shorter after differentiation of HL-60 cells, and slightly longer after induction of PLB-985. Overall, the present studies show that GSH-Px activity rises during in vitro-induced monocytic or granulocytic differentiation of myeloid cell lines and that the increased expression of the cellular GSH-Px gene occurs through complex mechanisms that include transcriptional up-regulation. This pattern contrasts with the nearly complete cotranslational regulation of GSH-Px expression by exogenous selenium.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1826-1833 ◽  
Author(s):  
LE Toothaker ◽  
DA Gonzalez ◽  
N Tung ◽  
RS Lemons ◽  
MM Le Beau ◽  
...  

Abstract We have isolated 5′ cDNA clones encoding a member of the cellular myosin heavy chain gene family from human leukocytes. The predicted amino acid sequence shows 93% identity to a chicken cellular myosin heavy chain, 76% to chicken smooth muscle, and 40% to human sarcomeric myosin heavy chain. The mRNA is expressed as a 7.4- to 7.9-kb doublet in many nonmuscle cells, and is upregulated in myeloid cell lines on induction from a proliferating to a differentiated state. Antisera raised against a peptide made from the predicted amino acid sequence specifically reacts with a 224-Kd polypeptide in leukocyte cell lines, and the protein is also upregulated during the induction of monocytic and granulocytic differentiation in these cells. The gene for this cellular myosin heavy chain maps to chromosome 22, bands q12.3-q13.1, demonstrating that it is not located in the previously described sarcomeric gene clusters on chromosomes 14 and 17. This cellular myosin heavy chain may be a major contractile protein responsible for movement in myeloid cell lines because no mRNA for sarcomeric myosin heavy chain is detected in these cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2474-2474
Author(s):  
Jesus Duque-Afonso ◽  
Aitomi Essig ◽  
Leticia M Solari ◽  
Tobias Berg ◽  
Heike L. Pahl ◽  
...  

Abstract Abstract 2474 Background: The leukemia-specific oncofusion protein AML1/ETO regulates different target genes, including the LAT2 gene (encoding the adaptor molecule LAT2/NTAL/LAB), which is epigenetically repressed by AML1/ETO as we have previously described. LAT2 is phosphorylated by c-kit and has a role in mast cell and B cell activation. To address the functional role of LAT2 during myeloid differentiation, expression studies were performed in myeloid cell lines, and LAT2 was overexpressed by retroviral gene transfer in AML1/ETO-positive Kasumi-1 cells and AML1/ETO-negative U-937 cells. Methods: To induce monocytic and granulocytic differentiation, the myeloid cell lines U-937, HL-60 and NB4 were treated with PMA and ATRA, respectively, and LAT2 expression measured by both Northern and Western blot. LAT2 was overexpressed in Kasumi-1 and U-937 cells by use of the retroviral vector pMYSiG-IRES-GFP. Virus was produced in 293T cells and titrated in TE671 cells. Following transduction, GFP-positive cells were sorted by fluorescence-activated cell sorting (FACS). Transduced cells were treated with PMA (2 and 10 nM for 24 and 48 hours) and ATRA (0.1 μM and 0.5 μM for 48 and 96 hours), respectively. Results: The AML1/ETO-negative myeloid cell lines HL-60, NB4 and U-937 readily expressed LAT2, which was further upregulated by PMA, and transiently downregulated with ATRA. In the AML1/ETO-positive Kasumi-1 and SKNO-1 cells, LAT2 expression was absent. To address the functional role of this repression, forced expression of LAT2 was achieved in Kasumi-1 and U-937 cells and resulted in effective processing of LAT2 protein (confirmed by Western blot), and a decrease in the expression of the differentiation markers CD11b and CD11c (FACS analysis) in Kasumi-1 but not U-937, with only minor effects of LAT2 overexpression upon apoptosis and cell growth arrest. Notably, during both PMA- and ATRA-induced differentiation, a striking maturation block occurred in Kasumi-1 (measured by CD11b/CD11c expression, observed at different doses and time points of these treatments), while differentiation of U-937 cells was unimpaired by overexpression of LAT2. Conclusions: In AML1/ETO-negative leukemia cells, LAT2 expression is differentially regulated during monocytic and granulocytic differentiation. In AML1/ETO-positive leukemia cells, in which LAT2 is repressed, LAT2 re-expression imposes a striking maturation block. Graded expression of this novel AML1/ETO target gene may therefore play an important role in maintaining the phenotypic characteristics of this leukemia subtype. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2725-2725
Author(s):  
Lawrence J Druhan ◽  
Shimena Li ◽  
Sarah A Baxter ◽  
Amanda Lance ◽  
Andrea E Price ◽  
...  

Abstract Leucine-rich α2 glycoprotein (LRG), the founding member of the leucine-rich repeat superfamily of proteins, was initially identified in serum more than 30 years ago, but its biologic function has remained elusive. A role for LRG has been implicated in inflammation and angiogenesis. Our laboratory previously identified cDNA and genomic clones for human and murine LRG, and showed that ectopically expressed LRG localizes to the granule compartment in transfected myeloid cell lines and promotes their granulocytic differentiation. We also demonstrated that expression of LRG is transcriptionally regulated during neutrophil granulocyte differentiation in a manner similar to that reported for genes encoding the different subsets of neutrophil granule proteins. The presence of LRG in primary neutrophils and a role for LRG in hematopoiesis, however, have not been previously described. Based on our prior studies in transfected myeloid cell lines, we considered the tantalizing possibility that LRG is a novel neutrophil granule protein that is secreted extracellularly upon neutrophil activation to modulate hematopoiesis. To investigate this, we examined LRG in primary human neutrophils isolated from healthy volunteers. Immunoblot analysis of whole cell lysates from neutrophils (97% purity) identified a higher molecular weight LRG species in neutrophils (62 kDa) compared to serum (50 kDa); our data demonstrate the difference in apparent molecular weight is due to differential glycosylation. Immunofluorescence microscopy using antibodies to human LRG and antibodies to the neutrophil granule proteins myeloperoxidase (MPO), lactoferrin (LF), and matrix metalloproteinase 9 (MMP-9, also known as gelatinase), along with fluorescently-labeled secondary antibodies, demonstrated the presence of LRG in the cytoplasm of neutrophils in a compartment corresponding to LF. ELISA and immunoblot analyses of subcellular fractions from isolated neutrophils prepared by nitrogen cavitation demonstrated the presence of LRG in LF-containing fractions as well as some MMP-9-containing fractions, consistent with localization of LRG to the secondary/tertiary granule compartment. Neutrophil exocytosis assays using ionomycin, phorbol-12-myristate 13-acetate, and f-Met-Leu-Phe as stimulants also indicated that LRG is co-released with LF and MMP9, but not with MPO. Notably, LRG secreted from activated neutrophils could bind cytochrome c as reported for LRG purified from serum. Recent reports that LRG can also bind to the TGFβR1 receptor on endothelial cells prompted us to investigate the effects of LRG on TGFβ signaling in hematopoietic cells. LRG significantly antagonized the inhibitory effect of TGFβ on HL-60 cell proliferation (n=3; p<0.05) and also on colony growth of human hematopoietic progenitor cells. When LRG was added to hematopoietic progenitor cells cultured in TGFβ-containing Methocult (SF H4436, serum free), a 50% increase in CFU-GMs was observed. Collectively, these data suggest a novel mechanism whereby neutrophils modulate hematopoiesis in the microenvironment via extracellular release of LRG, and invoke an additional role for neutrophils in innate immunity that has not previously been reported Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1826-1833
Author(s):  
LE Toothaker ◽  
DA Gonzalez ◽  
N Tung ◽  
RS Lemons ◽  
MM Le Beau ◽  
...  

We have isolated 5′ cDNA clones encoding a member of the cellular myosin heavy chain gene family from human leukocytes. The predicted amino acid sequence shows 93% identity to a chicken cellular myosin heavy chain, 76% to chicken smooth muscle, and 40% to human sarcomeric myosin heavy chain. The mRNA is expressed as a 7.4- to 7.9-kb doublet in many nonmuscle cells, and is upregulated in myeloid cell lines on induction from a proliferating to a differentiated state. Antisera raised against a peptide made from the predicted amino acid sequence specifically reacts with a 224-Kd polypeptide in leukocyte cell lines, and the protein is also upregulated during the induction of monocytic and granulocytic differentiation in these cells. The gene for this cellular myosin heavy chain maps to chromosome 22, bands q12.3-q13.1, demonstrating that it is not located in the previously described sarcomeric gene clusters on chromosomes 14 and 17. This cellular myosin heavy chain may be a major contractile protein responsible for movement in myeloid cell lines because no mRNA for sarcomeric myosin heavy chain is detected in these cells.


1991 ◽  
Vol 273 (3) ◽  
pp. 573-578 ◽  
Author(s):  
M C Garcia ◽  
C Garcia ◽  
M A Gijon ◽  
S Fernandez-Gallardo ◽  
F Mollinedo ◽  
...  

The binding and metabolism of platelet-activating factor (PAF) was studied in human cell lines resembling myeloid cells (HL60 and U937) and B and T lymphocytes (Daudi and Jurkat). All of the cell lines were found to bind and catabolize exogenous [3H]PAF in a time- and temperature-dependent manner. PAF binding could also be demonstrated in isolated membrane fractions, which provides further evidence of the existence of true membrane receptors. Myeloid cell lines contained numbers of receptors at least 10-fold higher than in lymphoid cell lines. Biosynthesis of PAF upon challenge by ionophore A23187 could be demonstrated in HL60 and U937 cells. In contrast, lymphoid cell lines were unable to produce PAF. Incubation with [14C]acetate showed incorporation of the label into three main fractions: neutral lipids, phosphatidylcholine and PAF, but the distribution of the label varied depending on the cell line. Significant incorporation into phosphatidylcholine was observed in uninduced myeloid cell lines. A phospholipase A2 acting on 1-O-hexadecyl-2-arachidonoyl-sn-glycero-3-phosphocholine and an acetyl-CoA:lyso-PAF acetyltransferase were expressed in the HL60 cell line and showed variations in specific activity with granulocytic differentiation. In contrast, these enzyme activities were not expressed in Daudi and Jurkat cell lines. These data indicate (1) the occurrence of PAF binding and catabolism in both myeloid and lymphoid cell lines; (2) the restriction of PAF biosynthesis to myeloid cell lines, especially HL60 cells; (3) the occurrence of differentiation-elicited changes in the specific activities of the enzymes involved in PAF biosynthesis by the remodelling pathway; and (4) the central role played by the disposal of lyso-PAF, a product of the phospholipase A2 reaction, in PAF biosynthesis.


1997 ◽  
Vol 17 (7) ◽  
pp. 4133-4145 ◽  
Author(s):  
Y W Zhang ◽  
S C Bae ◽  
G Huang ◽  
Y X Fu ◽  
J Lu ◽  
...  

The gene AML1/PEBP2 alphaB encodes the alpha subunit of transcription factor PEBP2/CBF and is essential for the establishment of fetal liver hematopoiesis. Rearrangements of AML1 are frequently associated with several types of human leukemia. Three types of AML1 cDNA isoforms have been described to date; they have been designated AML1a, AML1b, and AML1c. All of these isoforms encode the conserved-Runt domain, which harbors the DNA binding and heterodimerization activities. We have identified a new isoform of the AML1 transcript, termed AML1 deltaN, in which exon 1 is directly connected to exon 4 by alternative splicing. The AML1 deltaN transcript was detected in various hematopoietic cell lines of lymphoid to myeloid cell origin, as revealed by RNase protection and reverse transcriptase PCR analyses. The protein product of AML1 deltaN lacks the N-terminal region of AML1, including half of the Runt domain, and neither binds to DNA nor heterodimerizes with the beta subunit. However, AML1 deltaN was found to interfere with the transactivation activity of PEBP2, and the molecular region responsible for this activity was identified. Stable expression of AML1 deltaN in 32Dcl3 myeloid cells blocked granulocytic differentiation in response to granulocyte colony-stimulating factor. These results suggest that AML1 deltaN acts as a modulator of AML1 function and serves as a useful tool to dissect the functional domains in the C-terminal region of AML1.


2021 ◽  
Author(s):  
Izabela Jatczak-Pawlik ◽  
Michał Gorzkiewicz ◽  
Maciej Studzian ◽  
Robin Zinke ◽  
Dietmar Appelhans ◽  
...  

1989 ◽  
Vol 13 (8) ◽  
pp. 651-659 ◽  
Author(s):  
Pamela Roberts ◽  
Mark Jones ◽  
Rosemary Gale ◽  
Shaun Thomas ◽  
Nicholas Tidman ◽  
...  
Keyword(s):  

1993 ◽  
Vol 104 (2) ◽  
pp. 477-484
Author(s):  
M. Alvarez-Silva ◽  
L.C. da Silva ◽  
R. Borojevic

In chronic murine schistosomiasis, extramedullar myelopoiesis was observed, with proliferation of myeloid cells in liver parenchyma and in periovular granulomas. We have studied the question of whether cells obtained from granulomatous connective tissue may act as myelopoietic stroma, supporting long-term myeloid proliferation. Primary cell lines (GR) were obtained in vitro from periovular granulomas, induced in mouse livers by Schistosoma mansoni infection. These cells were characterized as myofibroblasts, and represent liver connective tissue cells involved in fibro-granulomatous reactions. They were able to sustain survival and proliferation of the multipotent myeloid cell lines FDC-P1 and DA-1 (dependent on interleukin-3 and/or granulocyte-macrophage colony stimulating factor, GM-CSF) without the addition of exogenous growth factors. This stimulation was dependent upon myeloid cell attachment to the GR cell layer; GR cell-conditioned medium had no activity. Primary murine skin fibroblasts could not sustain myelopoiesis. The endogenous growth-factor was identified as GM-CSF by neutralization assays with monoclonal antibodies. The stimulation of myelopoiesis occurred also when GR cells had been fixed with glutardialdehyde. The observed stimulatory activity was dependent upon heparan sulphate proteoglycans (HSPGs) associated with GR cell membranes. It could be dislodged from the cell layer with heparin or a high salt buffer. Our results indicate a molecular interaction between endogenous growth-factor and HSPGs; this interaction may be responsible for the stabilization and presentation of growth factors in myelopoietic stromas, mediating extramedullar proliferation of myeloid cells in periovular granulomas.


Sign in / Sign up

Export Citation Format

Share Document