scholarly journals Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation

Leukemia ◽  
2004 ◽  
Vol 18 (10) ◽  
pp. 1637-1645 ◽  
Author(s):  
S Böttcher ◽  
M Ritgen ◽  
C Pott ◽  
M Brüggemann ◽  
T Raff ◽  
...  
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1717-1717
Author(s):  
Maya Danielle Hughes ◽  
Rong Zeng ◽  
Kristen L. Miller ◽  
Soheil Meshinchi

Abstract Abstract 1717 FLT3 internal tandem duplication (FLT3/ITD) is a somatic mutation that is associated with therapy resistance in acute myeloid leukemia (AML). Early data demonstrated low sensitivity for this assay, thus limiting its utility to the evaluation of diagnostic specimens, and precluding its utility in remission samples. We inquired whether the standard FLT3/ITD assay can be modified to enable its utility to detect presence of residual disease in remission specimens. Enhanced FLT3/ITD assay sensitivity was accomplished by altering annealing temperature, increasing the number of cycles as well as amount and concentration of the product that was subjected to capillary electropheresis. To assess the sensitivity of the enhanced assay, FLT3/ITD positive cells M4V11 were serially diluted in a population of ITD negative cells (HL60). The concentration of M4V11 cells in each sample ranged from 10% to 0.0001%. PCR product was subjected to capillary electropheresis and the appropriate region of the electropherogram was examined for the presence of the appropriate mutant product length. Appropriate FLT3/ITD signal was detected in dilutions down to 0.01%, validating our ability to detect extremely low levels of FLT3/ITD. We subsequently examined the remission marrows from patients with a history of FLT3/ITD who had undergone stem cell transplantation. Available bone marrow specimens (N = 51) from patients who underwent stem cell transplantation for FLT3/ITD-positive AML were analyzed and the result was correlated with the available standard PCR as well as the available MRD assessment by muti-dimensional flow cytometry; samples negative for FLT3/ITD by standard assay (N=11) were then subjected to the enhanced PCR methodology. Available ITD length for each patient was used for examination of the appropriate region of the electropherogram in each case. Of the available 51 bone marrow specimens analyzed, 23 specimens had FLT3/ITD detectable by standard PCR protocol. Using our modified PCR method and capillary electrophoresis, an additional 13 specimens had identifiable FLT3/ITD. In 6/11 patients, where initial FLT3/ITD was negative by standard methodology, enhanced assay identified FLT3/ITD signal. In each case, detection of FLT3/ITD by the enhanced assay was followed by morphologic or immunophenotypic emergence of disease, prompting therapeutic intervention. We further evaluated the ability to detect FLT3/ITD in patients with minimal residual disease by flow cytometry. 33 of the bone marrow specimens analyzed had a less than 5% abnormal blast population as detectable via flow cytometry. Among these samples, 7 had FLT3/ITD detectable using standard detection techniques. An additional 11 samples had detectable FLT3/ITD when our modified protocol was employed. Of the specimens that had less than 1% abnormal blast population as detectable via flow cytometry (N = 27), 4 had FLT3/ITD detectable using the standard detection assay; when our modified protocol was employed, an additional 6 samples had detectable FLT3/ITD. 17 bone marrow specimens had no abnormal blast cells detectable via flow cytometry; of these samples 1 had detectable FLT3/ITD using the standard detection assay, while an additional 3 had detectable FLT3/ITD using our modified assay. In four patients, FLT3/ITD was detected in bone marrow specimens found to have flow cytometric MRD of 0% (N=2), 0.1% (N=1) and 0.4% (N=1). In two patients with no detectable disease by MDF, both had emergence of morphologic (60% blast) or immunophenotypic disease by MDF (1.1%) within 4–6 weeks of detection of FLT3/ITD by enhanced assay. In this study, we demonstrate that simple modifications to the FLT3/ITD genotyping assay significantly increases its sensitivity and provides a highly sensitive and very specific assay for identifying this disease associated mutation in remission specimens. The enhanced assay can be incorporated into the standard evaluation of remission status for patients with FLT3/ITD. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Suzane Dal Bó ◽  
Annelise Pezzi ◽  
Bruna Amorin ◽  
Vanessa Valim ◽  
Rosane Isabel Bittencourt ◽  
...  

The treatment strategy in multiple myeloma (MM) is to get complete remission followed by high-dose chemotherapy and autologous Hematopoietic Stem Cell Transplantation (HSCT). Neoplastic Plasma Cells (NPCs) are CD45-/dim, CD38+high, CD138+, CD19−, and  CD56+high in most cases. The description of this immunophenotype is of major importance as it leads to the correct identification of minimal residual disease (MRD). Samples from 44 Patients were analyzed prospectively in this study. We analyzed if the presence of MRD at three months after HSCT was predictive of relapse or death. There were 40 evaluable patients of whom 16/40 patients had MRD at three moths after HSCT and there were none in cytological relapse. The mean overall survival (OS) was 34 months and disease-free survival (RFS) was 28 months after HSCT. There was no significant difference in the log rank analysis comparing OS and the presence of MRD (P=0,611) and RFS (P=0,3106). Here, we demonstrate that three color flow cytometry (FCM) is more sensitive for MDR evaluation than cytological analyzes. However, based in our data we can not affirm that MRD is a good predictor of MM relapse or death. In conclusion, our results could be attributed to a short followup, small sample size, and over most to the inability of a three-color FCM to detect the NPC population.


2021 ◽  
Vol 8 (8) ◽  
Author(s):  
Missassi G ◽  
◽  
Ikoma-Colturato MRV ◽  
Bortolucci CM ◽  
Conte-Spilari JE ◽  
...  

Multiple Myeloma (MM) is one of the most common hematologic malignancies, with a heterogeneous prognosis. Therefore, the recognition of biomarkers can be useful to understand the differences in patient outcomes. Minimal Residual Disease (MRD) has been considered a very important prognostic factor in MM. In parallel, the prognostic value of immunophenotypic markers expressed in MM Plasma Cells (PCs) has also been described. The aim of this study was to assess the impact of CD27, CD28, CD45, CD56, CD117 and β2-microglobulin expressions on the outcome of 154 MM patients undergoing Autologous Stem Cell Transplantation (ASCT). The relation of each marker studied with the Overall Survival (OS) and Progression-Free Survival (PFS) was assessed, alone and in association with pre-ASCT MRD. Scores of good (GPM) and poor Prognostic Markers (PPM) were established, according to their respective survival curves. The expressions of CD27 and CD45 were associated to longer OS (p=0.013 and p=0.00, respectively) and PFS (p=0.00) as well as the absence of CD28 (OS p=0.026; PFS p=0.001) and CD56 (OS p=0.004; PFS p=0.009), in patients with undetectable MRD. The number of GPM showed an inverse correlation with the level of MRD (p=0.04), while a higher number of PPM was observed in patients with higher levels of MRD (p=0.04), which were also significantly associated with OS and PFS. In conclusion, although pre-ASCT MRD is a powerful prognostic factor in MM, these biomarkers can provide additional prognostic information and be used in the follow-up of MM patients.


Sign in / Sign up

Export Citation Format

Share Document