scholarly journals Extracellular domain determinants of LET-23 (EGF) receptor tyrosine kinase activity in Caenorhabditis elegans

Oncogene ◽  
2003 ◽  
Vol 22 (35) ◽  
pp. 5471-5480 ◽  
Author(s):  
Nadeem Moghal ◽  
Paul W Sternberg
1991 ◽  
Vol 11 (5) ◽  
pp. 2697-2703 ◽  
Author(s):  
C A Faaland ◽  
F H Mermelstein ◽  
J Hayashi ◽  
J D Laskin

Treatment of A431 human epidermoid cells with epidermal growth factor (EGF; 20 nM) results in decreased proliferation. This is associated with blockage of the cells in the S and/or G2 phases of the cell cycle. We found that tyrphostin, a putative tyrosine kinase inhibitor, in the range of 50 to 100 microM, partially reversed the growth-inhibitory and cell cycle changes induced by EGF. By using high-pressure liquid chromatography with electrochemical detection, we found that tyrphostin was readily incorporated into A431 cells, reaching maximal levels within 1 h. Although tyrphostin (50 to 100 microM) had no effect on high-affinity binding of EGF to its receptor in A431 cells for up to 24 h, the compound partially inhibited EGF-stimulated EGF receptor tyrosine kinase activity. However, this effect was evident only after prolonged treatment of the cells (4 to 24 h) with the drug. When the peak intracellular concentration of tyrphostin occurred (1 h), no inhibition of tyrosine kinase activity was observed. After both 1 and 24 h, tyrphostin was a less effective inhibitor of tyrosine kinase activity than the potent tumor promoter 12-O-tetradecanoyl phorbol-13-acetate, which almost completely blocked EGF receptor autophosphorylation. On the basis of our data, we hypothesize that tyrphostin is not a competitive inhibitor of the EGF receptor tyrosine kinase in intact cells and that it functions by an indirect mechanism.


2010 ◽  
Vol 25 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Masahiko Hirata ◽  
Yasukazu Kanai ◽  
Sadahiro Naka ◽  
Keiji Matsumuro ◽  
Shinya Kagawa ◽  
...  

1994 ◽  
Vol 162 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Darlene L. Yim ◽  
Lee K. Opresko ◽  
H.Steven Wiley ◽  
Richard Nuccitelli

1991 ◽  
Vol 11 (5) ◽  
pp. 2697-2703
Author(s):  
C A Faaland ◽  
F H Mermelstein ◽  
J Hayashi ◽  
J D Laskin

Treatment of A431 human epidermoid cells with epidermal growth factor (EGF; 20 nM) results in decreased proliferation. This is associated with blockage of the cells in the S and/or G2 phases of the cell cycle. We found that tyrphostin, a putative tyrosine kinase inhibitor, in the range of 50 to 100 microM, partially reversed the growth-inhibitory and cell cycle changes induced by EGF. By using high-pressure liquid chromatography with electrochemical detection, we found that tyrphostin was readily incorporated into A431 cells, reaching maximal levels within 1 h. Although tyrphostin (50 to 100 microM) had no effect on high-affinity binding of EGF to its receptor in A431 cells for up to 24 h, the compound partially inhibited EGF-stimulated EGF receptor tyrosine kinase activity. However, this effect was evident only after prolonged treatment of the cells (4 to 24 h) with the drug. When the peak intracellular concentration of tyrphostin occurred (1 h), no inhibition of tyrosine kinase activity was observed. After both 1 and 24 h, tyrphostin was a less effective inhibitor of tyrosine kinase activity than the potent tumor promoter 12-O-tetradecanoyl phorbol-13-acetate, which almost completely blocked EGF receptor autophosphorylation. On the basis of our data, we hypothesize that tyrphostin is not a competitive inhibitor of the EGF receptor tyrosine kinase in intact cells and that it functions by an indirect mechanism.


2002 ◽  
Vol 63 (12) ◽  
pp. 2187-2195 ◽  
Author(s):  
Saghir Akhtar ◽  
Debbie Dunnion ◽  
David Poyner ◽  
John Ackroyd ◽  
Mike Bibby ◽  
...  

1994 ◽  
Vol 81 (3) ◽  
pp. 411-419 ◽  
Author(s):  
Katsuya Miyaji ◽  
Eiichi Tani ◽  
Hideki Shindo ◽  
Atsuhisa Nakano ◽  
Takashi Tokunaga

✓ The effects of tyrphostin, a selective protein tyrosine kinase inhibitor, on epidermal growth factor (EGF)-stimulated cell growth and EGF-receptor tyrosine kinase activity were studied in four human glioma cell lines. Stimulation by EGF induced variable enhancements of cell growth as well as tyrosine phosphorylation of EGF receptor and intracellular target proteins in all glioma cell lines. The level of immunoreactive EGF receptor detected with antibodies against extra- and intracellular domains was moderate in all four glioma cell lines, but markedly decreased with the latter antibody in two glioma cell lines. This variation was associated with considerable reduction of the EGF-stimulated tyrosine autophosphorylation level. Tyrphostin inhibited dose-dependently the EGF-stimulated cell growth and tyrosine autophosphorylation in all glioma cell lines, and the optimum time for the maximum inhibitory effect on tyrosine autophosphorylation was 12 to 18 hours after treatment with tyrphostin. The antiproliferative activity of tyrphostin nearly correlated quantitatively with its potency as an inhibitor of the EGF-stimulated EGF receptor tyrosine kinase activity. Tyrphostin had no significant effect on the immunoreactive EGF receptor levels, on the affinity constants and numbers of EGF receptor, or on the down-regulation and specific internalization of EGF receptor in any glioma cell line, suggesting that the effects of tyrphostin are not likely to be the results of reduction in EGF receptor and EGF binding capacity. In addition, the serum-stimulated cell growth was also inhibited dose-dependently by higher concentrations of tyrphostin in all glioma cell lines. It might be suggested, therefore, that tyrphostin inhibits EGF-stimulated cell growth by a specific suppression of EGF receptor tyrosine kinase activity, and at higher concentrations there appears to be some degree of either nonspecific inhibition or inhibition of serum-stimulated protein tyrosine kinase activity to induce the cell growth inhibition of gliomas.


Sign in / Sign up

Export Citation Format

Share Document