scholarly journals Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Bin Wu ◽  
Jiefeng Pan ◽  
Liang Ge ◽  
Liang Wu ◽  
Huanting Wang ◽  
...  
2014 ◽  
Vol 783-786 ◽  
pp. 1692-1697
Author(s):  
Je Deok Kim ◽  
Mun Suk Jun

Nafion-azole (benzimidazole, 1,2,4-triazole, 1,2,3-triazole) composite membranes were prepared by room temperature and autoclave solution processing for high temperature (above 100 °C) PEMFC. Among the various Nafion – azole composite membranes, Nafion – 1,2,3-triazole membrane showed excellent flexibility, thermal stability, and homogeneous structure. Nafion – 1,2,4-triazole composite membrane had high thermal and mechanical properties, and also showed high proton conductivity of 0.02 S/cm at the temperature of 160 °C under dry (N2) condition.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 135
Author(s):  
Zhengping Zhou ◽  
Oksana Zholobko ◽  
Xiang-Fa Wu ◽  
Ted Aulich ◽  
Jivan Thakare ◽  
...  

Polymer electrolyte membrane fuel cells (PEMFCs) expect a promising future in addressing the major problems associated with production and consumption of renewable energies and meeting the future societal and environmental needs. Design and fabrication of new proton exchange membranes (PEMs) with high proton conductivity and durability is crucial to overcome the drawbacks of the present PEMs. Acid-doped polybenzimidazoles (PBIs) carry high proton conductivity and long-term thermal, chemical, and structural stabilities are recognized as the suited polymeric materials for next-generation PEMs of high-temperature fuel cells in place of Nafion® membranes. This paper aims to review the recent developments in acid-doped PBI-based PEMs for use in PEMFCs. The structures and proton conductivity of a variety of acid-doped PBI-based PEMs are discussed. More recent development in PBI-based electrospun nanofiber PEMs is also considered. The electrochemical performance of PBI-based PEMs in PEMFCs and new trends in the optimization of acid-doped PBIs are explored.


RSC Advances ◽  
2015 ◽  
Vol 5 (66) ◽  
pp. 53870-53873 ◽  
Author(s):  
Xiaobai Li ◽  
Hongwei Ma ◽  
Hailong Wang ◽  
Shitong Zhang ◽  
Zhenhua Jiang ◽  
...  

This work outlines polybenzimidazole-based high temperature proton exchange membranes with a high phosphoric acid-doping level, high proton conductivity and high stability.


2019 ◽  
Vol 48 (6) ◽  
pp. 2190-2196 ◽  
Author(s):  
Shuai-Liang Yang ◽  
Yue-Ying Yuan ◽  
Fei Ren ◽  
Chen-Xi Zhang ◽  
Qing-Lun Wang

A novel 2D nickel(ii) complex (1) has been successfully synthesized using a 2,2′-bipyridyl, polycarboxylsulfonate ligand H4SBTC and Ni2+ ions. Owing to the presence of abundant water molecules, hydrogen bond networks and other protons, 1 and its hybrid membranes demonstrate high proton conductivity.


2019 ◽  
Vol 59 (11) ◽  
pp. 2279-2289 ◽  
Author(s):  
Asheesh Singh ◽  
Anaparthi G. Kumar ◽  
Sayantani Saha ◽  
Rajdeep Mukherjee ◽  
Soumendu Bisoi ◽  
...  

2019 ◽  
Vol 43 (1) ◽  
pp. 24-27 ◽  
Author(s):  
Xing Meng ◽  
Hai-Ning Wang ◽  
Xiao-Kun Wang ◽  
Long-Zhang Dong ◽  
Yan-Hong Zou

Through cation substitution in a zirconium based coordination polymer, an isostructural framework 1@NH4+ has been prepared without any apparent structural change. The proton conductivity of 1@NH4+ is successfully improved. It exhibits high proton conductivity (1.39 × 10−2 S cm−1) at 98% relative humidity and 60 °C.


Sign in / Sign up

Export Citation Format

Share Document