scholarly journals High speed and adaptable error correction for megabit/s rate quantum key distribution

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
A. R. Dixon ◽  
H. Sato
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kadir Gümüş ◽  
Tobias A. Eriksson ◽  
Masahiro Takeoka ◽  
Mikio Fujiwara ◽  
Masahide Sasaki ◽  
...  

AbstractReconciliation is a key element of continuous-variable quantum key distribution (CV-QKD) protocols, affecting both the complexity and performance of the entire system. During the reconciliation protocol, error correction is typically performed using low-density parity-check (LDPC) codes with a single decoding attempt. In this paper, we propose a modification to a conventional reconciliation protocol used in four-state protocol CV-QKD systems called the multiple decoding attempts (MDA) protocol. MDA uses multiple decoding attempts with LDPC codes, each attempt having fewer decoding iteration than the conventional protocol. Between each decoding attempt we propose to reveal information bits, which effectively lowers the code rate. MDA is shown to outperform the conventional protocol in regards to the secret key rate (SKR). A 10% decrease in frame error rate and an 8.5% increase in SKR are reported in this paper. A simple early termination for the LDPC decoder is also proposed and implemented. With early termination, MDA has decoding complexity similar to the conventional protocol while having an improved SKR.


2005 ◽  
Author(s):  
Xiao Tang ◽  
Lijun Ma ◽  
Alan Mink ◽  
Anastase Nakassis ◽  
Barry Hershman ◽  
...  

2021 ◽  
pp. 259-267
Author(s):  
Kamal Kishor Choure ◽  
Ankur Saharia ◽  
Nitesh Mudgal ◽  
Manish Tiwari ◽  
Ghanshyam Singh

2019 ◽  
Vol 17 (02) ◽  
pp. 1950013
Author(s):  
Shi-Biao Tang ◽  
Jie Cheng

In the process of quantum key distribution (QKD), error correction algorithm is used to correct the error bits of the key at both ends. The existing applied QKD system has a low key rate and is generally Kbps of magnitude. Therefore, the performance requirement of data processing such as error correction is not high. In order to cope with the development demand of high-speed QKD system in the future, this paper introduces the Winnow algorithm to realize high-speed parity and hamming error correction based on Field Programmable Gate Array (FPGA), and explores the performance limit of this algorithm. FPGA hardware implementation can achieve the scale of Mbps bandwidth, with choosing different group length of sifted key by different error rate, and can achieve higher error correction efficiency by reducing the information leakage in the process of error correction, and improves the QKD system’s secure key rate, thus helping the future high-speed QKD system.


2020 ◽  
Vol 19 (9) ◽  
Author(s):  
Dabo Guo ◽  
Chao He ◽  
Tianhao Guo ◽  
Zhe Xue ◽  
Qiang Feng ◽  
...  

2017 ◽  
Vol 31 (02) ◽  
pp. 1650264 ◽  
Author(s):  
Dong Jiang ◽  
Yuanyuan Chen ◽  
Xuemei Gu ◽  
Ling Xie ◽  
Lijun Chen

Quantum key distribution (QKD) promises unconditionally secure communications, however, the low bit rate of QKD cannot meet the requirements of high-speed applications. Despite the many solutions that have been proposed in recent years, they are neither efficient to generate the secret keys nor compatible with other QKD systems. This paper, based on chaotic cryptography and middleware technology, proposes an efficient and universal QKD protocol that can be directly deployed on top of any existing QKD system without modifying the underlying QKD protocol and optical platform. It initially takes the bit string generated by the QKD system as input, periodically updates the chaotic system, and efficiently outputs the bit sequences. Theoretical analysis and simulation results demonstrate that our protocol can efficiently increase the bit rate of the QKD system as well as securely generate bit sequences with perfect statistical properties. Compared with the existing methods, our protocol is more efficient and universal, it can be rapidly deployed on the QKD system to increase the bit rate when the QKD system becomes the bottleneck of its communication system.


Sign in / Sign up

Export Citation Format

Share Document