scholarly journals High-resolution high-speed dynamic mechanical spectroscopy of cells and other soft materials with the help of atomic force microscopy

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
M. Dokukin ◽  
I. Sokolov
2009 ◽  
Vol 97 (5) ◽  
pp. 1354-1361 ◽  
Author(s):  
Ignacio Casuso ◽  
Noriyuki Kodera ◽  
Christian Le Grimellec ◽  
Toshio Ando ◽  
Simon Scheuring

2021 ◽  
Vol 9 (4) ◽  
pp. 680
Author(s):  
Christopher T. Evans ◽  
Sara J. Baldock ◽  
John G. Hardy ◽  
Oliver Payton ◽  
Loren Picco ◽  
...  

Suitable immobilisation of microorganisms and single cells is key for high-resolution topographical imaging and study of mechanical properties with atomic force microscopy (AFM) under physiologically relevant conditions. Sample preparation techniques must be able to withstand the forces exerted by the Z range-limited cantilever tip, and not negatively affect the sample surface for data acquisition. Here, we describe an inherently flexible methodology, utilising the high-resolution three-dimensional based printing technique of multiphoton polymerisation to rapidly generate bespoke arrays for cellular AFM analysis. As an example, we present data collected from live Emiliania huxleyi cells, unicellular microalgae, imaged by contact mode High-Speed Atomic Force Microscopy (HS-AFM), including one cell that was imaged continuously for over 90 min.


MRS Advances ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 587-593 ◽  
Author(s):  
Sergei Magonov ◽  
Shijie Wu

ABSTRACTEnvironmental atomic force microscopy (AFM) study of brush macromolecules, polymer blends and bitumen was performed with regular and Quick Scan imaging. Condensation of different vapors on sample surface has induced swelling of hydrophilic domains that helps recognizing the components of heterogeneous compounds. High-resolution imaging of brush macromolecules was achieved in ethyl acetate vapor. Fast monitoring of aggregation/spreading of brush macromolecules revealed dynamics of conformational changes and molecular motion.


2021 ◽  
Vol 03 (02) ◽  
pp. 128-133
Author(s):  
Zijie Qiu ◽  
Qiang Sun ◽  
Shiyong Wang ◽  
Gabriela Borin Barin ◽  
Bastian Dumslaff ◽  
...  

Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.


Sign in / Sign up

Export Citation Format

Share Document