scholarly journals A Non-Destructive, Tuneable Method to Isolate Live Cells for High-Speed AFM Analysis

2021 ◽  
Vol 9 (4) ◽  
pp. 680
Author(s):  
Christopher T. Evans ◽  
Sara J. Baldock ◽  
John G. Hardy ◽  
Oliver Payton ◽  
Loren Picco ◽  
...  

Suitable immobilisation of microorganisms and single cells is key for high-resolution topographical imaging and study of mechanical properties with atomic force microscopy (AFM) under physiologically relevant conditions. Sample preparation techniques must be able to withstand the forces exerted by the Z range-limited cantilever tip, and not negatively affect the sample surface for data acquisition. Here, we describe an inherently flexible methodology, utilising the high-resolution three-dimensional based printing technique of multiphoton polymerisation to rapidly generate bespoke arrays for cellular AFM analysis. As an example, we present data collected from live Emiliania huxleyi cells, unicellular microalgae, imaged by contact mode High-Speed Atomic Force Microscopy (HS-AFM), including one cell that was imaged continuously for over 90 min.

2009 ◽  
Vol 97 (5) ◽  
pp. 1354-1361 ◽  
Author(s):  
Ignacio Casuso ◽  
Noriyuki Kodera ◽  
Christian Le Grimellec ◽  
Toshio Ando ◽  
Simon Scheuring

MRS Advances ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 587-593 ◽  
Author(s):  
Sergei Magonov ◽  
Shijie Wu

ABSTRACTEnvironmental atomic force microscopy (AFM) study of brush macromolecules, polymer blends and bitumen was performed with regular and Quick Scan imaging. Condensation of different vapors on sample surface has induced swelling of hydrophilic domains that helps recognizing the components of heterogeneous compounds. High-resolution imaging of brush macromolecules was achieved in ethyl acetate vapor. Fast monitoring of aggregation/spreading of brush macromolecules revealed dynamics of conformational changes and molecular motion.


2018 ◽  
Vol 113 (9) ◽  
pp. 093701 ◽  
Author(s):  
Marc Schächtele ◽  
Erik Hänel ◽  
Tilman E. Schäffer

2004 ◽  
Vol 37 (10) ◽  
pp. 3780-3791 ◽  
Author(s):  
Yann Gilbert ◽  
Radouane Fikri ◽  
Anna Ruymantseva ◽  
Gilles Lerondel ◽  
Renaud Bachelot ◽  
...  

2012 ◽  
Vol 83 (8) ◽  
pp. 083710 ◽  
Author(s):  
O. D. Payton ◽  
L. Picco ◽  
M. J. Miles ◽  
M. E. Homer ◽  
A. R. Champneys

2012 ◽  
Vol 516 ◽  
pp. 396-401
Author(s):  
Itsuhachi Ishisaki ◽  
Yuya Ohashi ◽  
Tatsuo Ushiki ◽  
Futoshi Iwata

We developed a real-time nanomanipulation system based on high-speed atomic force microscopy (HS-AFM). During manipulation, the operation of the manipulation is momentarily interrupted for a very short time for high-speed imaging; thus, the topographical image of the fabricated surface is periodically updated during the manipulation. By using a high-speed imaging technique, the interrupting time could be much reduced during the manipulation; as a result, the operator almost does not notice the blink time of the interruption for imaging during the manipulation. As for the high-speed imaging technique, we employed a contact-mode HS-AFM to obtain topographic information through the instantaneous deflection of the cantilever during high-speed scanning. By using a share motion PZT scanner, the surface could be imaged with a frame rate of several fps. Furthermore, the high-speed AFM was coupled with a haptic device for human interfacing. By using the system, the operator can move the AFM probe into any position on the surface and feel the response from the surface during manipulation. As a demonstration of the system, nanofabrication under real-time monitoring was performed. This system would be very useful for real-time nanomanipulation and fabrication of sample surfaces.


Author(s):  
Anthony G. Fowler ◽  
Mohammad Maroufi ◽  
Ali Bazaei ◽  
S. O. Reza Moheimani

This paper presents a new silicon-on-insulator-based MEMS nanopositioner that is designed for high-speed on-chip atomic force microscopy (AFM). The device features four electrostatic actuators in a 2-DOF configuration that allows bidirectional actuation of a central stage along two orthogonal axes with displacements greater than ±10μm. The x- and y-axis resonant modes of the stage are located at 1274Hz and 1286Hz, respectively. Integrated electrothermal sensors are used to control the system in closed loop, with a damping controller and an internal model controller being implemented for each axis. The performance of the closed-loop system is demonstrated by performing a 20μm×20μm contact-mode AFM scan via a Lissajous scan trajectory with a 410Hz sinusoidal reference.


Sign in / Sign up

Export Citation Format

Share Document