scholarly journals Crystal Violet Lactone Salicylaldehyde Hydrazone Zn(II) Complex: a Reversible Photochromic Material both in Solution and in Solid Matrix

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Kai Li ◽  
Yuanyuan Li ◽  
Jing Tao ◽  
Lu Liu ◽  
Lili Wang ◽  
...  

Author(s):  
S. Hagège ◽  
U. Dahmen ◽  
E. Johnson ◽  
A. Johansen ◽  
V.S. Tuboltsev

Small particles of a low-melting phase embedded in a solid matrix with a higher melting point offer the possibility of studying the mechanisms of melting and solidification directly by in-situ observation in a transmission electron microscope. Previous studies of Pb, Cd and other low-melting inclusions embedded in an Al matrix have shown well-defined orientation relationships, strongly faceted shapes, and an unusual size-dependent superheating before melting.[e.g. 1,2].In the present study we have examined the shapes and thermal behavior of eutectic Pb-Cd inclusions in Al. Pb and Cd form a simple eutectic system with each other, but both elements are insoluble in solid Al. Ternary alloys of Al (Pb,Cd) were prepared from high purity elements by melt spinning or by sequential ion implantation of the two alloying additions to achieve a total alloying addition of up to lat%. TEM observations were made using a heating stage in a 200kV electron microscope equipped with a video system for recording dynamic behavior.



2019 ◽  
Author(s):  
Jingjing Yan ◽  
Rick Homan ◽  
Corrianna Boucher ◽  
Prem N. Basa ◽  
Katherine Fossum ◽  
...  

Recently, we demonstrated that triphenylacetic acid could be used to seal dye molecules within MOF-5, but guest release required digestion of the framework by treatment with acid. We prepared the sterically bulky photocapping group [bis-(3-nitro-benzyl)-amino]-(3-nitro-phenyl)-acetic acid (PC1) can prevent Crystal violet dye diffusion from inside MOF-5 until removed by photolysis.



2019 ◽  
Author(s):  
Jingjing Yan ◽  
Rick Homan ◽  
Corrianna Boucher ◽  
Prem N. Basa ◽  
Katherine Fossum ◽  
...  

Recently, we demonstrated that triphenylacetic acid could be used to seal dye molecules within MOF-5, but guest release required digestion of the framework by treatment with acid. We prepared the sterically bulky photocapping group [bis-(3-nitro-benzyl)-amino]-(3-nitro-phenyl)-acetic acid (PC1) can prevent Crystal violet dye diffusion from inside MOF-5 until removed by photolysis.



2008 ◽  
Vol 7 (1) ◽  
pp. 9-12 ◽  
Author(s):  
Ilie Siminiceanu ◽  
Carmen-Ionela Alexandru ◽  
Eric Brillas


HortScience ◽  
1993 ◽  
Vol 28 (10) ◽  
pp. 981-984 ◽  
Author(s):  
Jay Frick ◽  
Cary A. Mitchell

2-[N-morpholino] ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome: ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 m m) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite: 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g·m-2·day-1) were about double that of the control (8.2 g·m-2·day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g·m-2·day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mm MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.



2019 ◽  
Vol 16 (3) ◽  
pp. 347-352 ◽  
Author(s):  
M. Vlachou ◽  
G. Stavrou ◽  
A. Siamidi ◽  
S. Flitouri ◽  
V. Ioannidou ◽  
...  

Background: N-Acetylserotonin (NAS, N-acetyl-5-hydroxytryptamine) is the immediate precursor of the neurohormone melatonin (MT, N-acetyl-5-methoxytryptamine), which regulates sleep and wake cycles. NAS is produced by the N-acetylation of serotonin and is converted to melatonin via the action of Acetylserotonin O-methyltransferase (ASMT). Like melatonin, NAS acts as an agonist on the melatonin receptors MT1, MT2, and MT3. However, as NAS is abundant in specific brain areas, separate from serotonin and melatonin, it may also have discrete central effects. Indicatively, it has been reported that NAS may play a role in the antidepressant effects of Selective Serotonin Reuptake Inhibitors (SSRIs) and Monoamine Oxidase Inhibitors (MAOIs). </P><P> Objective: To decipher the controlled release characteristics of the active substances (NAS and MT) in a quick initial pace, aiming at a satisfactory sleep-onset related anti-depressive profile and prolonged release, thereafter, targeting at coping with poor sleep quality problems. </P><P> Methods: A series of hydrophilic matrix tablets involving as excipients, hydroxypropylmethylcellulose (HPMC) K15M, low viscosity sodium alginate, lactose monohydrate, and polyvinylpyrrolidone (PVP) M.W.: 10.000 and 55.000) was developed and tested at two dissolution media (pH 1.2 and 7.4). </P><P> Results: The results showed that commonly used excipients with different physicochemical properties govern the controlled release of NAS and MT from solid matrix systems. </P><P> Conclusions: We have demonstrated how broadly used excipients affect the in vitro controlled release of NAS and MT from solid pharmaceutical formulations. Currently, we extend our studies on the controlled release of these drugs using various other biopolymers/formulants of different physicochemical characteristics, which will help to highlight the discrete release profiles of NAS and MT.



1990 ◽  
Vol 55 (4) ◽  
pp. 890-895
Author(s):  
Rudolf Zahradník ◽  
B. Andes Hess

HFO and HClO (fluorosyl and chlorosyl hydrides) and isomeric molecules HOF and HOCl (hypofluorous and hypochlorous acids) have been studied theoretically. On the basis of nonempiracal quantum chemical calculations (MP2, MP4 and CCD/6-311G**) geometry, energy and vibrational characteristics are analyzed and it is concluded that there is a poor chance to observe formation of HFO. Possibly, bombardment of HF in a solid matrix by 16O could lead at very low temperature to HFO.



2021 ◽  
pp. 125656
Author(s):  
Kheira Belkassa ◽  
Mounir Khelifa ◽  
Isabelle Batonneau-Gener ◽  
Kheira Marouf-Khelifa ◽  
Amine Khelifa
Keyword(s):  


2021 ◽  
Author(s):  
Silvia Stašková ◽  
Milena Reháková ◽  
Michal Oravec ◽  
Andrea Jabconová


Author(s):  
Raja Selvaraj ◽  
Shraddha Pai ◽  
Gokulakrishnan Murugesan ◽  
Sadanand Pandey ◽  
Ruchi Bhole ◽  
...  

AbstractThe reach of nanotechnology has permeated into a range of disciplines and systematically revolutionized many manufacturing techniques. Today, nanoparticles are fabricated using varied approaches, each with its pros and cons. Of them, the green synthesis approach has been very effective in terms of overall economics and the stability of nanoparticles. The current study investigates the use of the leaf extract of Bridelia retusa for the synthesis of iron oxide nanoparticles. Typical of these nanoparticles, no specific peak was discernible on employing UV–visible spectroscopy. The size, morphological features, and crystallinity of the nanoparticles were determined by employing scanning electron microscopy and electron diffraction spectroscopy. Almost uniformly sized at 38.58 nm, the nanoparticles were spherical, constituting elemental iron at 11.5% and elemental oxygen at 59%. Their relative composition confirmed the nanoparticles to be iron oxide. X-ray diffraction studies showed the particles to be hexagonal and rhombohedral, estimating the crystallite size at 24.27 nm. BET analysis put the pore volume at 0.1198 cm3/g and pore diameter at 7.92 nm. The unique feature of the nanoparticles was that the specific surface area was 75.19 m2/g, which is more than 12 times higher than commercial α-Fe2O3. The participation of a variety of biochemicals in the leaf extract towards the reduction-cum-stabilization was confirmed using FTIR analysis. The Fenton-like catalytic activity of the nanoparticles was put to test by attempting to degrade crystal violet dye, which was completely achieved in 270 min. The kinetics of the degradation was also modelled in the study.



Sign in / Sign up

Export Citation Format

Share Document