scholarly journals A novel approach combining self-organizing map and parallel factor analysis for monitoring water quality of watersheds under non-point source pollution

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Yixiang Zhang ◽  
Xinqiang Liang ◽  
Zhibo Wang ◽  
Lixian Xu
2011 ◽  
Vol 32 (1-3) ◽  
pp. 291-296 ◽  
Author(s):  
Yingxia Li ◽  
Junhua Ma ◽  
Zhifeng Yang ◽  
Inchio Lou

2021 ◽  
Vol 329 ◽  
pp. 01027
Author(s):  
Liya Yang ◽  
Hao Zhou ◽  
Liyuan Dai

Taking the small watershed in Tanxia town as an example, the classified investigation of agricultural non-point source pollution in the tributaries of Lijiang River was carried out, the sources of local agricultural non-point source pollution were analyzed, and the surface water environmental quality standard and Nemero index method were used to evaluate the water quality of the basin. The results show that the water quality of the basin is poor and the pollution exceeds the standard all the year round, and the source of agricultural non-point source pollution mainly depends on the pollution of agricultural chemical fertilizer. Improving the use of local chemical fertilizer and rational application of chemical fertilizer are the key factors to improve local agricultural non-point source pollution.


2013 ◽  
Vol 10 (11) ◽  
pp. 14463-14493
Author(s):  
B. B. Huang ◽  
D. H. Yan ◽  
H. Wang ◽  
B. F. Cheng ◽  
X. H. Cui

Abstract. Under the background of climate change and human's activities, there has been presenting an increase both in the frequency of droughts and the range of their impacts. Droughts may give rise to a series of resources, environmental and ecological effects, i.e. water shortage, water quality deterioration as well as the decrease in the diversity of aquatic organisms. This paper, above all, identifies the impact mechanism of drought on the surface water quality of the basin, and then systematically studies the laws of generation, transfer, transformation and degradation of pollutants during the drought, finding out that the alternating droughts and floods stage is the critical period during which the surface water quality is affected. Secondly, through employing indoor orthogonality experiments, serving drought degree, rainfall intensity and rainfall duration as the main elements and designing various scenario models, the study inspects the effects of various factors on the nitrogen loss in soil as well as the loss of non-point sources pollution and the leaching rate of nitrogen under the different alternating scenarios of drought and flood. It comes to the conclusion that the various factors and the loss of non-point source pollution are positively correlated, and under the alternating scenarios of drought and flood, there is an exacerbation in the loss of ammonium nitrogen and nitrate nitrogen in soil, which generates the transfer and transformation mechanisms of non-point source pollution from a micro level. Finally, by employing the data of Nenjiang river basin, the paper assesses the impacts of drought on the surface water quality from a macro level.


2014 ◽  
Vol 955-959 ◽  
pp. 941-945
Author(s):  
Dong Feng Huang ◽  
Li Min Wang ◽  
Wei Hua Li ◽  
Xin Jian Lin

Under the condition of natural rain and through the method of field runoff plots, a field experiment with 6 kinds of water and fertilizer managements in 5 years was carried out to study the effects of water and fertilizer managements on the concentration and loss of nitrogen and phosphorus by runoff from paddy field. Results showed that: Water quality of runoff under “none fertilization and routine irrigation”(CK) was the best, and which under “optimization fertilization and optimization irrigation”(OF+OI) took the second place. And the loss of nitrogen and phosphorus under CK was the least, and which under OF+OI was less. Thus, we can conclude that it is an economical and effective measure to control nitrogen and phosphorus non-point source pollution from paddy field by using the treatment of OF+OI.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1955
Author(s):  
Mingxi Zhang ◽  
Guangzhi Rong ◽  
Aru Han ◽  
Dao Riao ◽  
Xingpeng Liu ◽  
...  

Land use change is an important driving force factor affecting the river water environment and directly affecting water quality. To analyze the impact of land use change on water quality change, this study first analyzed the land use change index of the study area. Then, the study area was divided into three subzones based on surface runoff. The relationship between the characteristics of land use change and the water quality grade was obtained by grey correlation analysis. The results showed that the land use types changed significantly in the study area since 2000, and water body and forest land were the two land types with the most significant changes. The transfer rate is cultivated field > forest land > construction land > grassland > unused land > water body. The entropy value of land use information is represented as Area I > Area III > Area II. The shift range of gravity center is forest land > grassland > water body > unused land > construction land > cultivated field. There is a strong correlation between land use change index and water quality, which can be improved and managed by changing the land use type. It is necessary to establish ecological protection areas or functional areas in Area I, artificial lawns or plantations shall be built in the river around the water body to intercept pollutants from non-point source pollution in Area II, and scientific and rational farming in the lower reaches of rivers can reduce non-point source pollution caused by farming.


2021 ◽  
Vol 261 ◽  
pp. 04023
Author(s):  
Xu He ◽  
Hou Siyan

The water quality of six important rivers in Haihe River Basin, including Yongding River, Luanhe River, North Canal, Daqing River, South Canal and Chaobai River, was evaluated. The influence of point source and non-point source on water quality was analyzed. The causes of water environmental pollution in the major rivers were preliminarily revealed. The results show that the water quality of Chaobai River is good, and the impact of point source and non-point source discharge on the water body is small. Other rivers are affected by different degrees of point source and non-point source pollution. Based on the analysis results, the engineering measures and management countermeasures for river regulation are put forward.


2021 ◽  
Vol 7 (6) ◽  
pp. 6247-6261
Author(s):  
Xiaoqing Liu ◽  
Juanfen Wang

As water pollution is more and more serious, ArcGIS is proposed to explore the impact of environmental and ecological factors on water. Taking the river water quality as the research object, this paper simulates and analyzes the endogenous and non-point source pollution and water quality through indoor physical model experiment, hydrological and water quality numerical model and water quality numerical model, and analyzes the impact of different environmental changes on river water quality and pollution sources from micro and macro perspectives. The main contents include: experimental study on the influence mechanism of overlying water velocity, disturbance and water temperature on sediment endogenous release, construction and simulation of watershed non-point source pollution model, construction and simulation of watershed river water quality model, as well as the impact of environmental change on river water quality and quantitative analysis of river pollution sources.


2019 ◽  
Author(s):  
◽  
Seungyub Lee

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Water pollution caused by nutrients, and the resulting eutrophication, have increased over time. This water pollution is increasingly caused by non-point source pollution, both nutrients and erosion. Controlling non-point pollution is important for water quality. However, non-point source pollution is not easy to track and control. In this case, management efforts can be solutions for these environmental issues in both urban and agricultural areas. In this dissertation, I focus on phosphorous (P) fertilizer because P is the limiting nutrient in freshwater systems. If we can reduce P runoff from urban and agricultural non-point sources, water quality can be improved. ... By analyzing national water quality and political economy data and by investigating a national survey of soybean producers, this dissertation found implications to increase adoption of environmentally friendly policies and practices. Solving this problem will require efforts to limit both residential and agricultural nonpoint source pollution. The results could be helpful policy makers to target specific regions to initiate environmental policies and extension efforts for designing educational programs to increase adoption rate as well as environmental quality.


Sign in / Sign up

Export Citation Format

Share Document