scholarly journals A promising structure for fabricating high strength and high electrical conductivity copper alloys

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Rengeng Li ◽  
Huijun Kang ◽  
Zongning Chen ◽  
Guohua Fan ◽  
Cunlei Zou ◽  
...  
2013 ◽  
Vol 68 (10) ◽  
pp. 777-780 ◽  
Author(s):  
Kazunari Maki ◽  
Yuki Ito ◽  
Hirotaka Matsunaga ◽  
Hiroyuki Mori

2013 ◽  
Vol 668 ◽  
pp. 804-807
Author(s):  
Lan Li ◽  
Lin Sheng Li ◽  
Chang Jun Qiu

In order to meet the need of high-strength and high-electrical conductivity copper alloys in industry. A method of making high-strength and high-electrical conductivity copper alloys is discussed in this paper. This method uses the technology of heated mold continuous casting to make Cu-Cr alloy. Because it utilizes the high electrical conductivity of copper matrix and high strength of the chromium phase, the in-situ composite Cu-Cr alloy with directional solidification structure is got. The in-situ composite Cu-Cr alloy has good properties and will be widely used in industry.


Alloy Digest ◽  
2008 ◽  
Vol 57 (10) ◽  

Abstract Swissmetal alloys C97 and C98 attain high strength by aging after cold working. The alloys are free machining and maintain a high electrical conductivity. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: CU-759. Producer or source: Avins Industrial Products.


Alloy Digest ◽  
1988 ◽  
Vol 37 (3) ◽  

Abstract UNS NO. A96101 in the heat treated condition is used primarily for enclosed bus conductor where both high strength and high electrical conductivity are desirable. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-287. Producer or source: Various aluminum companies.


Vacuum ◽  
2021 ◽  
pp. 110315
Author(s):  
G.Y. Li ◽  
S.Y. Li ◽  
L. Li ◽  
D.T. Zhang ◽  
J.D. Wang ◽  
...  

2020 ◽  
Vol 772 ◽  
pp. 138824 ◽  
Author(s):  
Mengmeng Wang ◽  
Haiyang Lv ◽  
Chi Zhang ◽  
Min Li ◽  
Haiyan Gao ◽  
...  

2012 ◽  
Vol 710 ◽  
pp. 563-568 ◽  
Author(s):  
S. Chenna Krishna ◽  
K. Thomas Tharian ◽  
Bhanu Pant ◽  
Ravi S. Kottada

Among the copper alloys, the Cu-3Ag-0.5Zr alloy is one of the potential candidates for combustion chamber of liquid rocket engine because of its optimum combination of high strength with thermal conductivity. The present study is a detailed characterization of microstructure, strength, and electrical conductivity during the aging treatment. The aging cycle for Cu-3Ag-0.5Zr alloy after the solution treatment (ST) was optimized to obtain higher hardness without compromising on electrical conductivity. The precipitates responsible for strengthening in aged samples are identified as nanocrystalline Ag precipitates with an average diameter of 9.0±2.0 nm.


Sign in / Sign up

Export Citation Format

Share Document