Age-Hardening Characteristics of Cu-3Ag-0.5Zr Alloy

2012 ◽  
Vol 710 ◽  
pp. 563-568 ◽  
Author(s):  
S. Chenna Krishna ◽  
K. Thomas Tharian ◽  
Bhanu Pant ◽  
Ravi S. Kottada

Among the copper alloys, the Cu-3Ag-0.5Zr alloy is one of the potential candidates for combustion chamber of liquid rocket engine because of its optimum combination of high strength with thermal conductivity. The present study is a detailed characterization of microstructure, strength, and electrical conductivity during the aging treatment. The aging cycle for Cu-3Ag-0.5Zr alloy after the solution treatment (ST) was optimized to obtain higher hardness without compromising on electrical conductivity. The precipitates responsible for strengthening in aged samples are identified as nanocrystalline Ag precipitates with an average diameter of 9.0±2.0 nm.

2014 ◽  
Vol 794-796 ◽  
pp. 827-832 ◽  
Author(s):  
Paul A. Rometsch ◽  
Zhou Xu ◽  
Hao Zhong ◽  
Huai Yang ◽  
Lin Ju ◽  
...  

Aluminium alloys play an important role in overhead power transmission applications. All-aluminium alloy conductor cables require increasingly hard-to-achieve combinations of high tensile strength and high electrical conductivity. The problem is that a high strength is normally associated with a reduced electrical conductivity. Both heat-treatable 6xxx series aluminium alloys and work-hardening 1xxx series aluminium alloys are important contenders for these applications. By contrast, the addition of rare earths and/or transition metals to aluminium may provide further opportunities to achieve improved combinations of precipitation hardening, substructural hardening and elevated temperature stability. In this work, strength and electrical conductivity relationships are investigated for a range of 6xxx series aluminium alloys and an Al-Sc alloy. The Al-Sc alloy was produced by means of a direct laser metal deposition process that allowed more Sc to be placed into solid solution than by conventional casting or solution treatment. The paper explores the relative effects of composition, cold working and age hardening on the balance of strength and electrical conductivity, including examples of how improved combinations of both strength and conductivity can be achieved.


2009 ◽  
Vol 24 (6) ◽  
pp. 2123-2129 ◽  
Author(s):  
Z. Li ◽  
Z.Y. Pan ◽  
Y.Y. Zhao ◽  
Z. Xiao ◽  
M.P. Wang

A high-conductivity and super-high-strength alloy, Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg, has been developed. The processing conditions of the alloy have been investigated. The evolution of microstructure of the alloy on aging has been examined by transmission electron microscopy. The processing condition giving the highest hardness and good electrical conductivity is as follows: solution treatment at 970 °C for 4 h, cold rolling to 60% reduction, and aging at 500 °C for 30 min. The processed alloy has an average tensile strength of 1180 MPa, 0.2% proof strength of 795 MPa, elongation of 2.75%, and average electrical conductivity of 26.5% IACS. Orthorhombic Ni2Si precipitates are responsible for the age-hardening effect. The orientation relationship between the precipitates and the matrix is (110)m(211)p and. DO22 ordering together with spinodal decomposition also contributed to the hardening.


2014 ◽  
Vol 788 ◽  
pp. 134-137 ◽  
Author(s):  
Pei Tong Ni ◽  
Li Peng Zhou ◽  
Bao Liang Bai ◽  
Ming Chen Han ◽  
Mei Sheng Zhu

Metastable beta titanium alloy Ti-5Mo-5V-8Cr-3Al, with high-strength, favorite ductility and outstanding capacity of cold forming and welding, has been found the applications in sheet metal component, pressure vessel, corrugated shell and cold heading rivet at the temperature lower than 350°C. In the present paper, the effect of cold machining deformation rate and heat treatment process on the properties and microstructures of Ti-5Mo-5V-8Cr-3Al strip were investigated. The results revealed that excellent comprehensive mechanical properties could be achieved with the alloy by reasonable cold machining process and with solution treatment at 800°C followed by gas quenching. Upon a solution and aging treatment at 480°C, the alloy performed favorite plasticity and high ultimate tensile strength of 1250MPa.


2011 ◽  
Vol 320 ◽  
pp. 196-201
Author(s):  
Fei Tang ◽  
Li Jia Wen

Rotating cavitation is one of the most important problems in the development of modern high performance rocket pump inducers. In this paper, a numerical simulation of rotating cavitation phenomenon in a 2D blade cascade of liquid rocket engine inducer was carried out using a mixture model based on Rayleigh-Plesset equation. The purpose is to investigate the characterization of rotating cavitation in a high speed inducer. The results show that when sub-synchronous rotating cavitation occurs, the speed for the length of the blade surface cavitation is lower than the speed frequency of rotation shaft with the same direction. The external aspect is that the pressure at the upstream of blades changes synchronous. Thus, the generation of sub-synchronous rotating cavitation is closely related to the changes of flow angel which caused by the flow fluctuations. Hence, elimination of the flow rate redistribution among the flow channel can effectively suppress the occurrence of this phenomenon.


2020 ◽  
Vol 860 ◽  
pp. 218-222
Author(s):  
Della Maharani ◽  
Anawati Anawati ◽  
I. Nyoman Jujur ◽  
Damisih

The metastable β Ti-6Al-4V alloy has been used clinically as a permanent implant material owing to its suitable mechanical properties and biocompatibility. However, the alloying element V was accused of causing toxicity when released to human body fluid. In this work, Nb was used in the alloy to replace V. This study presents the characterization of microstructure and mechanical hardness of as-cast Ti-6Al-7Nb and after solution treatment. The Ti-6Al-7Nb alloy was fabricated by the centrifugal casting method. Solution treatment was carried out at 970°C for 1 hour, followed by oil quenching, and consecutively an aging treatment was applied at 500°C for 8 hours. The microstructure was studied by an optical microscope. The mechanical hardness was measured by microhardness Vickers. The results show that the mechanical hardness of the Ti-6Al-7Nb decreased from 396.2 to 377.2 HV as a result of the solution treatment. Reduction in the hardness was attributed to the phase transformation of α to the β phase during the solution treatment. The XRD analysis showed a reduction in the intensity of α phases at the (011), (012), and (020) planes in the alloy after the solution treatment. The results indicated that the microstructure and mechanical hardness of Ti-6Al7-Nb alloy were affected by the solution treatment.


2010 ◽  
Vol 17 (01) ◽  
pp. 93-97 ◽  
Author(s):  
HOON CHO ◽  
BYOUNG-SOO LEE ◽  
HYUNG-HO JO

The effect of thermal heat treatment on the mechanical and electrical properties of Cu–Ag alloys was investigated. The homogenization heat treatment leads to an increase in tensile strength and a decrease in electrical conductivity due to dissolution of Ag into copper matrix. Also, it is shown that electrical conductivity of as-cast Cu–Ag alloys decreases with increasing Ag content. In contrast, the aging heat treatment gives rise to increase both the tensile strength and electrical conductivity because the Ag solute diffuses out from copper matrix during aging heat treatment. Therefore, it can be mentioned that the electrical conductivity of Cu–Ag alloys depends on Ag solute in copper matrix. Also, aging treatment is favorable to acquire high strength and high electrical conductivity.


2010 ◽  
Vol 654-656 ◽  
pp. 679-682 ◽  
Author(s):  
Hiroshi Yamada ◽  
Mitsuaki Furui ◽  
Susumu Ikeno ◽  
Yukio Sanpei ◽  
Katsuya Sakakibara ◽  
...  

AM60 magnesium alloy castings gave the solution treatment at 688K for 86.4ks. After that, aging treatment was carried out at three temperatures of 473, 498 and 523K. The age hardening curve obtained, hardness of all the specimens in the condition of peak aging was increased by decreasing the aging temperature. In the condition of long aging time, a cellular precipitation grows up from grain boundary to crystal grain. Fine cellular precipitation and intergranular precipitation obviously occurs at the lower aging temperature.


2012 ◽  
Vol 217-219 ◽  
pp. 294-298 ◽  
Author(s):  
Xiang Peng Xiao ◽  
Bai Qing Xiong ◽  
Qiang Song Wang ◽  
Guo Liang Xie ◽  
Li Jun Peng

The microstructural features and heat treatment response of Cu-2.1Ni-0.5Si-0.2Zr-0.05Cr (wt.%) alloy have been investigated. The alloy was aged at 400°C、450°C and 500°C after a cold deformation of 70% reduction. The variation in hardness and electrical conductivity of the alloy was measured as a function of aging time. The results indicated the highest peak hardness value of approximately 205HV for the alloy aged at 400°C for 4h after the solution treatment and cold deformation. The alloy has two main phases, one is Ni2Si phase, and the other is Cr2Zr phase. The strengthening mechanisms of the alloy include spinodal decomposition strengthening, ordering strengthening and precipitation strengthening.


Author(s):  
V. Radmilovic ◽  
G. Thomas ◽  
R. Kilaas ◽  
N. J. Kim

During aging of Al-Li-Zr based alloys δ'(Al3Li) precipitates heterogeneously around β'(Al3Zr), forming so-called composite precipitate[l-4], that has important effects on the mechanical behavior of these alloys. As has been observed in several investigations, the addition of small amount of Zr results in a fairly large volume fraction of β' in the microstructure, and this suggests that there may be a partitioning of Li in the β'. In the present investigation, high resolution electron microscopy (HREM) and image simulation have been used to perform detailed characterization of the chemistry and structure of β' precipitate.The alloy Al-3Li-1Cu-0.5Mg-0.5Zr (wt.%) has been heat treated as follows: a) solution treatment at 550°C for 2 hours and water quenching, b) aging treatment at 150°C for 4 hours or at 200°C for 8 hours and c) 10% cold working followed by aging at 175°C for 64 hours. HREM images were taken on a JEOL ARM electron microscope operating at 400 and 800kV. Simulated HREM images of the composite δ'/β' precipitate were calculated using CEMPAS multislice program described by Kilaas[5].


2010 ◽  
Vol 654-656 ◽  
pp. 1243-1246 ◽  
Author(s):  
Seung Won Lee ◽  
Daichi Akama ◽  
Z. Horita ◽  
Tetsuya Masuda ◽  
Shoichi Hirosawa ◽  
...  

This study presents an application of high-pressure torsion (HPT) to an Al-Li-Cu-Mg alloy (2091). The alloy was subjected to solid solution treatment at 505oC for 30 minutes and was processed by HPT under 6 GPa for 5 revolutions at room temperature. The hardness increased with straining and saturated to a constant level at 225 Hv. Aging was undertaken on the HPT-processed alloy at 100, 150 and 190oC for the total periods up to 9.3 days. The aging treatment led to a further increase in the hardness to ~275 Hv. It is shown that the simultaneous strengthening of the alloy due to grain refinement and age hardening was successfully achieved by application of HPT and subsequent aging treatment. The enhancement of the strength is prominent when compared with the application of a conventional rolling process.


Sign in / Sign up

Export Citation Format

Share Document