scholarly journals Determination of Stark parameters by cross-calibration in a multi-element laser-induced plasma

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hao Liu ◽  
Benjamin S. Truscott ◽  
Michael N. R. Ashfold

Abstract We illustrate a Stark broadening analysis of the electron density N e and temperature T e in a laser-induced plasma (LIP), using a model free of assumptions regarding local thermodynamic equilibrium (LTE). The method relies on Stark parameters determined also without assuming LTE, which are often unknown and unavailable in the literature. Here, we demonstrate that the necessary values can be obtained in situ by cross-calibration between the spectral lines of different charge states, and even different elements, given determinations of N e and T e based on appropriate parameters for at least one observed transition. This approach enables essentially free choice between species on which to base the analysis, extending the range over which these properties can be measured and giving improved access to low-density plasmas out of LTE. Because of the availability of suitable tabulated values for several charge states of both Si and C, the example of a SiC LIP is taken to illustrate the consistency and accuracy of the procedure. The cross-calibrated Stark parameters are at least as reliable as values obtained by other means, offering a straightforward route to extending the literature in this area.


Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 29
Author(s):  
Sylvie Sahal-Bréchot

The present paper revisits the determination of the semi-classical limit of the Feshbach resonances which play a role in electron impact broadening (the so-called “Stark“ broadening) of isolated spectral lines of ionized atoms. The Gailitis approximation will be used. A few examples of results will be provided, showing the importance of the role of the Feshbach resonances.



2019 ◽  
Vol 488 (4) ◽  
pp. 5594-5603 ◽  
Author(s):  
A M Popov ◽  
N I Sushkov ◽  
S M Zaytsev ◽  
T A Labutin

ABSTRACT Stark effect is observed in many natural and artificial plasmas and is of great importance for diagnostic purposes. Since this effect alters profiles of spectral lines, it should be taken into account when assessing chemical composition of radiation sources, including stars. Copper is one of the elements which studies of stellar atmospheres deal with. To this end, UV and visible Cu lines are used. However, there is a lack of agreement between existing data on their Stark parameters. It is therefore of interest to obtain new experimental data on these lines and to compare them to previous results. In this work, we have estimated Stark widths and shifts for three blue-green lines at 5105.54, 5153.24, and 5218.20 Å (corresponding transitions are [3d104p] 2P° → [3d94s2] 2D and [3d104d] 2D → [3d104p] 2P°) observed in a ‘long-spark’ laser-induced plasma. For the first time, we have accurately estimated an impact of hyperfine splitting on the profile shapes of the studied lines taking also into account the isotope shifts. We have shown that both effects considerably influence shift and width of Cu i line at 5105.54 Å, and shifts of Cu i lines at 5153.24 and 5218.20 Å.



2004 ◽  
Vol 58 (9) ◽  
pp. 1023-1031 ◽  
Author(s):  
I. B. Gornushkin ◽  
N. Omenetto ◽  
B. W. Smith ◽  
J. D. Winefordner


2013 ◽  
Vol 85 ◽  
pp. 20-33 ◽  
Author(s):  
M. Cvejić ◽  
M.R. Gavrilović ◽  
S. Jovićević ◽  
N. Konjević


2009 ◽  
Vol 26 (3) ◽  
pp. 345-350 ◽  
Author(s):  
E. Maiorca ◽  
E. Caffau ◽  
P. Bonifacio ◽  
M. Busso ◽  
R. Faraggiana ◽  
...  

AbstractWe present a new determination of the solar nitrogen abundance making use of 3D hydrodynamical modelling of the solar photosphere, which is more physically motivated than traditional static 1D models. We selected suitable atomic spectral lines, relying on equivalent width measurements already existing in the literature. For atmospheric modelling we used the co5bold 3D radiation hydrodynamics code. We investigated the influence of both deviations from local thermodynamic equilibrium (non-LTE effects) and photospheric inhomogeneities (granulation effects) on the resulting abundance. We also compared several atlases of solar flux and centre-disc intensity presently available. As a result of our analysis, the photospheric solar nitrogen abundance is A(N) = 7.86 ± 0.12.



2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hao Liu ◽  
Benjamin S. Truscott ◽  
Michael N. R. Ashfold


2013 ◽  
Vol 20 (2) ◽  
pp. 287-298 ◽  
Author(s):  
Sławomir Cięszczyk

Abstract This paper addresses problems arising from in situ measurement of gas content and temperature. Such measurements can be considered indirect. Transmittance or natural radiation of a gas is measured directly. The latter method (spectral radiation measurement) is often called spectral remote sensing. Its primary uses are in astronomy and in the measurement of atmospheric composition. In industrial processes, in situ spectroscopic measurements in the plant are often made with an open path Fourier Transform Infrared (FTIR) spectrometer. The main difficulty in this approach is related to the calibration process, which often cannot be carried out in the manner used in the laboratory. Spectral information can be obtained from open path spectroscopic measurements using mathematical modeling, and by solving the inverse problem. Determination of gas content based on spectral measurements requires comparison of the measured and modeled spectra. This paper proposes a method for the simultaneous use of multiple lines to determine the gas content. The integrated absorptions of many spectral lines permits calculation of the average band absorption. An inverse model based on neural networks is used to determine gas content based on mid-infrared spectra at variable temperatures.



Sign in / Sign up

Export Citation Format

Share Document