scholarly journals 5D imaging via light sheet microscopy reveals cell dynamics during the eye-antenna disc primordium formation in Drosophila

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yu Shan Huang ◽  
Hui Yu Ku ◽  
Yun Chi Tsai ◽  
Chin Hao Chang ◽  
Sih Hua Pao ◽  
...  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Benjamin Schmid ◽  
Gopi Shah ◽  
Nico Scherf ◽  
Michael Weber ◽  
Konstantin Thierbach ◽  
...  

2014 ◽  
Vol 127 (23) ◽  
pp. e1-e1
Author(s):  
R. S. Udan ◽  
V. G. Piazza ◽  
C.-w. Hsu ◽  
A.-K. Hadjantonakis ◽  
M. E. Dickinson

Development ◽  
2014 ◽  
Vol 141 (22) ◽  
pp. 4406-4414 ◽  
Author(s):  
R. S. Udan ◽  
V. G. Piazza ◽  
C.-w. Hsu ◽  
A.-K. Hadjantonakis ◽  
M. E. Dickinson

Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Qingqing Cheng ◽  
Juncheng Wang ◽  
Ling Ma ◽  
Zhixiong Shen ◽  
Jing Zhang ◽  
...  

AbstractAiry beams exhibit intriguing properties such as nonspreading, self-bending, and self-healing and have attracted considerable recent interest because of their many potential applications in photonics, such as to beam focusing, light-sheet microscopy, and biomedical imaging. However, previous approaches to generate Airy beams using photonic structures have suffered from severe chromatic problems arising from strong frequency dispersion of the scatterers. Here, we design and fabricate a metasurface composed of silicon posts for the frequency range 0.4–0.8 THz in transmission mode, and we experimentally demonstrate achromatic Airy beams exhibiting autofocusing properties. We further show numerically that a generated achromatic Airy-beam-based metalens exhibits self-healing properties that are immune to scattering by particles and that it also possesses a larger depth of focus than a traditional metalens. Our results pave the way to the realization of flat photonic devices for applications to noninvasive biomedical imaging and light-sheet microscopy, and we provide a numerical demonstration of a device protocol.


2021 ◽  
Vol 93 (8) ◽  
pp. 4092-4099
Author(s):  
Bing Li ◽  
Aleks Ponjavic ◽  
Wei-Hsin Chen ◽  
Lee Hopkins ◽  
Craig Hughes ◽  
...  

Author(s):  
Anais Badoual ◽  
Misa Arizono ◽  
Audrey Denizot ◽  
Mathieu Ducros ◽  
Hugues Berry ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Urmas Roostalu ◽  
Louise Thisted ◽  
Jacob Lercke Skytte ◽  
Casper Gravesen Salinas ◽  
Philip Juhl Pedersen ◽  
...  

AbstractAngiotensin converting enzyme inhibitors, among them captopril, improve survival following myocardial infarction (MI). The mechanisms of captopril action remain inadequately understood due to its diverse effects on multiple signalling pathways at different time periods following MI. Here we aimed to establish the role of captopril in late-stage post-MI remodelling. Left anterior descending artery (LAD) ligation or sham surgery was carried out in male C57BL/6J mice. Seven days post-surgery LAD ligated mice were allocated to daily vehicle or captopril treatment continued over four weeks. To provide comprehensive characterization of the changes in mouse heart following MI a 3D light sheet imaging method was established together with automated image analysis workflow. The combination of echocardiography and light sheet imaging enabled to assess cardiac function and the underlying morphological changes. We show that delayed captopril treatment does not affect infarct size but prevents left ventricle dilation and hypertrophy, resulting in improved ejection fraction. Quantification of lectin perfused blood vessels showed improved vascular density in the infarct border zone in captopril treated mice in comparison to vehicle dosed control mice. These results validate the applicability of combined echocardiographic and light sheet assessment of drug mode of action in preclinical cardiovascular research.


2021 ◽  
Author(s):  
Rolf Theodor Borlinghaus

Author(s):  
Christopher D. Nguyen ◽  
Patrick K. O'Neal ◽  
Nachiket Kulkarni ◽  
Eric Yang ◽  
Dongkyun Kang

Sign in / Sign up

Export Citation Format

Share Document