scholarly journals Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiuxiu Yu ◽  
Ying Wang ◽  
Li Li ◽  
Hongbian Li ◽  
Yuanyuan Shang

Abstract Biomass materials are promising precursors for the production of carbonaceous materials due to their abundance, low cost and renewability. Here, a freestanding wrinkled carbon membrane (WCM) electrode material for flexible supercapacitors (SCs) was obtained from flower petal. The carbon membrane was fabricated by a simple thermal pyrolysis process and further activated by heating the sample in air. As a binder and current collector-free electrode, the activated wrinkled carbon membrane (AWCM) exhibited a high specific capacitance of 332.7 F/g and excellent cycling performance with 92.3% capacitance retention over 10000 cycles. Moreover, a flexible all-solid supercapacitor with AWCM electrode was fabricated and showed a maximum specific capacitance of 154 F/g and great bending stability. The development of this flower petal based carbon membrane provides a promising cost-effective and environmental benign electrode material for flexible energy storage.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shuang Xi ◽  
Yinlong Zhu ◽  
Yutu Yang ◽  
Ying Liu

MnO2 nanorod/carbon cloth (MnO2/CC) composites were prepared through in situ redox deposition as freestanding electrodes for flexible supercapacitors. The CC substrates possessing porous and interconnecting structures enable the uniform decoration of MnO2 nanorods on each fiber, thus forming conformal coaxial micro/nanocomposites. Three-dimensional CC can provide considerable specific surface area for high mass loading of MnO2, and the direct deposition process without using polymeric binders enables reliable electrical connection of MnO2 with CC. The effect of MnO2 decoration on the electrochemical performances was further investigated, indicating that the electrode prepared with 40 min deposition time shows high specific capacitance (220 F/g at a scan rate of 5 mV/s) and good cycling property (90% of the initial specific capacitance was maintained after 2500 cycles) in 1 M Na2SO4 aqueous solution. This enhanced electrochemical performance is ascribed to the synergistic effect of good conductivity of carbon substrates as well as outstanding pseudocapacitance of MnO2 nanorods. The obtained MnO2/CC compositing electrode with the advantages of low cost and easy fabrication is promising in applications of flexible supercapacitors.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 555
Author(s):  
Francisco J. Romero ◽  
Denice Gerardo ◽  
Raul Romero ◽  
Inmaculada Ortiz-Gomez ◽  
Alfonso Salinas-Castillo ◽  
...  

In this paper, we present a comparative study of a cost-effective method for the mass fabrication of electrodes to be used in thin-film flexible supercapacitors. This technique is based on the laser-synthesis of graphene-based nanomaterials, specifically, laser-induced graphene and reduced graphene oxide. The synthesis of these materials was performed using two different lasers: a CO2 laser with an infrared wavelength of λ = 10.6 µm and a UV laser (λ = 405 nm). After the optimization of the parameters of both lasers for this purpose, the performance of these materials as bare electrodes for flexible supercapacitors was studied in a comparative way. The experiments showed that the electrodes synthetized with the low-cost UV laser compete well in terms of specific capacitance with those obtained with the CO2 laser, while the best performance is provided by the rGO electrodes fabricated with the CO2 laser. It has also been demonstrated that the degree of reduction achieved with the UV laser for the rGO patterns was not enough to provide a good interaction electrode-electrolyte. Finally, we proved that the specific capacitance achieved with the presented supercapacitors can be improved by modifying the in-planar structure, without compromising their performance, which, together with their compatibility with doping-techniques and surface treatments processes, shows the potential of this technology for the fabrication of future high-performance and inexpensive flexible supercapacitors.


2016 ◽  
Vol 40 (11) ◽  
pp. 9187-9193 ◽  
Author(s):  
Habib Gholipour-Ranjbar ◽  
Mohammad Soleimani ◽  
Hamid Reza Naderi

A Ni/Co–MOF-based supercapacitor electrode exhibited high specific capacitance, and good rate and cycling performance.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (107) ◽  
pp. 105771-105779 ◽  
Author(s):  
Hong-Yan Wang ◽  
Yue-Ya Wang ◽  
Xue Bai ◽  
Huan Yang ◽  
Jian-Ping Han ◽  
...  

Manganese silicate drapes (hydrothermal time of 3 h) exhibit high specific capacitance and excellent rate performance.


2022 ◽  
Author(s):  
Chong-Huan Wang ◽  
Da-Wei Zhang ◽  
Shude Liu ◽  
Yusuke Yamauchi ◽  
Fei-Bao Zhang ◽  
...  

Herein, we propose a solvent-assisted approach for preparing Ni-MOF microflowers with high specific capacitance and excellent rate capability as an electrode material for supercapacitors. Such high electrochemical performance is attributed...


2016 ◽  
Vol 45 (3) ◽  
pp. 164-171 ◽  
Author(s):  
Linjie Su ◽  
Bohong Li ◽  
Dongyu Zhao ◽  
Chuanli Qin ◽  
Zheng Jin

Purpose The purpose of this paper is to prepare a new modified activated carbon fibers (ACFs) of high specific capacitance used for electrode material of supercapacitor. Design/methodology/approach In this study, the specific capacitance of ACF was significantly increased by using the phenolic resin microspheres and melamine as modifiers to prepare modified PAN-based activated carbon fibers (MACFs) via electrospinning, pre-oxidation and carbonization. The symmetrical supercapacitor (using MACF as electrode) and hybrid supercapacitor (using MACF and activated carbon as electrodes) were tested in term of electrochemical properties by cyclic voltammetry, AC impedance and cycle stability test. Findings It was found that the specific capacitance value of the modified fibers were increased to 167 Fg-1 by adding modifiers (i.e. 20 wt.% microspheres and 15 wt.% melamine) compared to that of unmodified fibers (86.17 Fg-1). Specific capacitance of modified electrode material had little degradation over 10,000 cycles. This result can be attributed to that the modifiers embedded into the fibers changed the original morphology and enhanced the specific surface area of the fibers. Originality/value The modified ACFs in our study had high specific surface area and significantly high specific capacitance, which can be applied as efficient and environmental absorbent, and advanced electrode material of supercapacitor.


2014 ◽  
Vol 2 (32) ◽  
pp. 12692-12696 ◽  
Author(s):  
Xiaowei Ma ◽  
Jiwei Liu ◽  
Chongyun Liang ◽  
Xiwen Gong ◽  
Renchao Che

3D flower-like β-Ni(OH)2/GO/CNTs composite prepared via facile phase transformation method exhibited high specific capacitance (96% of theoretical pseudocapacitance at 2 A g−1) and good cycling performance.


Sign in / Sign up

Export Citation Format

Share Document