scholarly journals Long-term consumption of sugar-sweetened beverage during the growth period promotes social aggression in adult mice with proinflammatory responses in the brain

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jung-Yun Choi ◽  
Mi-Na Park ◽  
Chong-Su Kim ◽  
Young-Kwan Lee ◽  
Eun Young Choi ◽  
...  
SLEEP ◽  
2013 ◽  
Vol 36 (10) ◽  
pp. 1471-1481 ◽  
Author(s):  
Sigrid C. Veasey ◽  
Jessica Lear ◽  
Yan Zhu ◽  
Judith B. Grinspan ◽  
Dominic J. Hare ◽  
...  

2010 ◽  
Vol 54 (8) ◽  
pp. 475-482 ◽  
Author(s):  
Kazuo Nakamichi ◽  
Mutsuyo Takayama-Ito ◽  
Souichi Nukuzuma ◽  
Ichiro Kurane ◽  
Masayuki Saijo

2022 ◽  
Author(s):  
Zhangying Chen ◽  
Mecca Islam ◽  
Madeline Timken ◽  
Qinwen Mao ◽  
Booker Davis ◽  
...  

Abstract Introduction: Traumatic brain injury (TBI) afflicts over 3 million Americans every year. Patients over 65 years of age suffer increased mortality as well as greater long-term neurocognitive and neuropsychiatric morbidity compared to younger adults. Microglia, the resident macrophages of the brain, are complicit in both. Our published and preliminary data have demonstrated a significant age-effect in which aged microglia are more prone to adopt a constitutively activated state associated with worse neurocognitive and neuropsychiatric outcomes. Therefore, we hypothesized that aged microglia would fail to return to a homeostatic state after TBI but instead adopt a long-term injury-associated state within the brain of aged mice as compared to young-adult mice after TBI. Methods: Young-adult (14-weeks) and aged (80-weeks) C57BL/6 mice underwent TBI via controlled cortical impact vs. sham injury. We utilized single-cell RNA sequencing to examine age-associated cellular responses after TBI. Four months post-TBI or sham injury, brains were harvested, and CD45+ cells (N=4,000 cells) were isolated via florescence-activated cell sorting. cDNA libraries were prepared via the 10x Genomics Chromium Single Cell 3' Reagent Kit, followed by sequencing on a HiSeq 4000 instrument. The raw data were processed using the Cell Ranger pipeline mapped to the mm10 mouse reference genome and Seurat following standard workflow. Seurat and GOrilla were used for downstream clustering, differential gene expression, and pathway analysis. All cell types were annotated using canonical markers and top expressed genes. ProjecTILs was additionally used to interpret T cell states. Results: Microglia from young-adult and aged mice have distinct transcriptional profiles pre-injury and markedly different transcriptional responses post-injury compared to young-adult mice. Pre-injury, aged mice demonstrated a disproportionate immune cell infiltration, including T cells, as compared to young-adult mice (aged versus young: 45.5% vs. 14.5%). Post-injury, the disparity was amplified with a proportional decrease in homeostatic microglia and greater increased infiltrating T cells compared to young-adult mice (Microglia: 27.5% vs. 71%; T cell: 45.5% vs. 4.5%). Of note, aged mice post-injury had a subpopulation of unique, age-specific, immune-inflammatory microglia resembling gene profiles of neurodegenerative disease-associated microglia (DAM) with enriched pathways involved in leukocyte recruitment and Alzheimer’s disease pathogenesis (FDR < 0.05). Contrastingly, post-injury, aged mice demonstrate a heterogenous T-cell infiltration with gene profiles corresponding to CD8 effector memory, CD8 native-like, CD4, and double-negative T cells (75.9%, 2.5%, 12.9%, and 8.6%, respectively) and enriched pathways including tau protein binding, macromolecule synthesis, and cytokine-mediated signaling pathways (FDR < 0.05). Conclusion: We hypothesized that aged microglia would fail to return to a homeostatic state after TBI and adopt a long-term, injury-associated state within the brain of aged mice as compared to young-adult mice after TBI. In particular, our data suggest an age-dependent reduction of homeostatic microglia post-injury yet an upregulation in a unique microglial subpopulation with a distinct immuno-inflammatory profile. Furthermore, aged subjects demonstrated a markedly disproportionate inflammatory infiltrate after TBI predominated by the presence of CD8+ T cells. In addition, post-injury, brain trauma reorganized the T cell milieu, especially CD8 effector memory T cells, via upregulating genes associated with macromolecule biosynthesis process and negative regulation of neuronal death, possibly linking TBI with its long-term sequelae and complications. Taken together, our data showed that age-specific gene signature changes in the T-cell infiltrates and the microglial subpopulation contributes to increased vulnerability of the aged brain to TBI. Age should be an a priori consideration in future TBI clinical trials.


2021 ◽  
Vol 68 ◽  
pp. 102512
Author(s):  
Shannon N. Zenk ◽  
Yu Li ◽  
Julien Leider ◽  
Andrea A. Pipito ◽  
Lisa M. Powell

2010 ◽  
Vol 24 (4) ◽  
pp. 249-252 ◽  
Author(s):  
Márk Molnár ◽  
Roland Boha ◽  
Balázs Czigler ◽  
Zsófia Anna Gaál

This review surveys relevant and recent data of the pertinent literature regarding the acute effect of alcohol on various kinds of memory processes with special emphasis on working memory. The characteristics of different types of long-term memory (LTM) and short-term memory (STM) processes are summarized with an attempt to relate these to various structures in the brain. LTM is typically impaired by chronic alcohol intake but according to some data a single dose of ethanol may have long lasting effects if administered at a critically important age. The most commonly seen deleterious acute effect of alcohol to STM appears following large doses of ethanol in conditions of “binge drinking” causing the “blackout” phenomenon. However, with the application of various techniques and well-structured behavioral paradigms it is possible to detect, albeit occasionally, subtle changes of cognitive processes even as a result of a low dose of alcohol. These data may be important for the consideration of legal consequences of low-dose ethanol intake in conditions such as driving, etc.


Author(s):  
Peter R. Breggin

BACKGROUND: The vaccine/autism controversy has caused vast scientific and public confusion, and it has set back research and education into genuine vaccine-induced neurological disorders. The great strawman of autism has been so emphasized by the vaccine industry that it, and it alone, often appears in authoritative discussions of adverse effects of the MMR and other vaccines. By dismissing the chimerical vaccine/autism controversy, vaccine defenders often dismiss all genuinely neurological aftereffects of the MMR (measles, mumps, and rubella) and other vaccines, including well-documented events, such as relatively rare cases of encephalopathy and encephalitis. OBJECTIVE: This report explains that autism is not a physical or neurological disorder. It is not caused by injury or disease of the brain. It is a developmental disorder that has no physical origins and no physical symptoms. It is extremely unlikely that vaccines are causing autism; but it is extremely likely that they are causing more neurological damage than currently appreciated, some of it resulting in psychosocial disabilities that can be confused with autism and other psychosocial disorders. This confusion between a developmental, psychosocial disorder and a physical neurological disease has played into the hands of interest groups who want to deny that vaccines have any neurological and associated neuropsychiatric effects. METHODS: A review of the scientific literature, textbooks, and related media commentary is integrated with basic clinical knowledge. RESULTS: This report shows how scientific sources have used the vaccine/autism controversy to avoid dealing with genuine neurological risks associated with vaccines and summarizes evidence that vaccines, including the MMR, can cause serious neurological disorders. Manufacturers have been allowed by the US Food and Drug Administration (FDA) to gain vaccine approval without placebo-controlled clinical trials. CONCLUSIONS: The misleading vaccine autism controversy must be set aside in favor of examining actual neurological harms associated with vaccines, including building on existing research that has been ignored. Manufacturers of vaccines must be required to conduct placebo-controlled clinical studies for existing vaccines and for government approval of new vaccines. Many probable or confirmed neurological adverse events occur within a few days or weeks after immunization and could be detected if the trials were sufficiently large. Contrary to current opinion, large, long-term placebo-controlled trials of existing and new vaccines would be relatively easy and safe to conduct.


2004 ◽  
pp. 406-412
Author(s):  
Paul Okunieff ◽  
Michael C. Schell ◽  
Russell Ruo ◽  
E. Ronald Hale ◽  
Walter G. O'Dell ◽  
...  

✓ The role of radiosurgery in the treatment of patients with advanced-stage metastatic disease is currently under debate. Previous randomized studies have not consistently supported the use of radiosurgery to treat patients with numbers of brain metastases. In negative-results studies, however, intracranial tumor control was high but extracranial disease progressed; thus, patient survival was not greatly affected, although neurocognitive function was generally maintained until death. Because the future promises improved systemic (extracranial) therapy, the successful control of brain disease is that much more crucial. Thus, for selected patients with multiple metastases to the brain who remain in good neurological condition, aggressive lesion-targeting radiosurgery should be very useful. Although a major limitation to success of this therapy is the lack of control of extracranial disease in most patients, it is clear that well-designed, aggressive treatment substantially decreases the progression of brain metastases and also improves neurocognitive survival. The authors present the management and a methodology for rational treatment of a patient with breast cancer who has harbored 24 brain metastases during a 3-year period.


Author(s):  
Amteshwar Singh Jaggi

Aim: The aim of the present study is to explore the neuroprotective effects of remote ischemic preconditioning in long term cognitive impairment after global cerebral ischemia induced-vascular dementia in mice. Material and methods: The mice were subjected to global cerebral ischemia by occluding the bilateral common carotid arteries for 12 minutes followed by the 24 hours of the reperfusion. The remote ischemic preconditioning stimulus was delivered in the form of 4 cycles of ischemia/reperfusion for 5 minutes each. The cerebral ischemic injury induced-long term cognitive impairment-related learning and memory alterations was assessed using morris water maze, the motor performances of the animals were evaluated using rota-rod test and neurological severity score. The cerebral infract size of the brain were quantified using triphenyltetrazolium chloride staining. Results: Global cerebral ischemia causes long term memory impairment, decreases motor performances and increases the brain infract size in animals. The delivery of remote ischemic preconditioning stimulus significantly abolished the long-term cognitive impairment and ameliorates the motor performances as well as cerebral infract size in brain. Conclusion: The remote ischemic preconditioning mediates neuro protection against global cerebral ischemic injury induced long-term cognitive impairment.


Sign in / Sign up

Export Citation Format

Share Document