Dielectric response of a dilute suspension of spherical colloidal particles to an oscillating electric field

1997 ◽  
Vol 93 (17) ◽  
pp. 3145-3154 ◽  
Author(s):  
Christine S. Mangelsdorf ◽  
Lee R. White
1994 ◽  
Vol 278 ◽  
pp. 149-174 ◽  
Author(s):  
Michael Loewenberg

The oscillatory motion of an electrically charged non-spherical colloidal particle in an oscillating electric field is investigated. The particle is immersed in an incompressible viscous fluid and assumed to have a thin electric double layer. For moderate-aspect-ration spheroids and cylinders, a simple algebraic expression is derived that accurately describes oscillatory electrophoretic particle motion in terms of the steady Stokes resistance, added mass, and Basset force. The effects of double-layer conduction and displacement currents within dielectric particles are included. The results indicate that electroacoustic measurements may be able to determine the ζ-potential, dielectric constant, surface conductivity (and microstructural information contained therein), size, density, volume fraction, and possibly shape of non-spherical particles in a dilute suspension. A simple formula is obtained for the high-frequency electrical conductivity of a dilute suspension of colloidal spheroids with arbitrary charge and dielectric constant; only the added mass and Basset force are required and the requisite parameters are given. The result is needed for electroacoustic measurements but it may also be independently useful for determining the dielectric constant, surface conductivity, volume fraction, and possibly the shape of non-spherical particles in a dilute suspension. Electroacoustic energy dissipation is described for a dilute colloidal suspension. It is shown that resistive electrical heating and viscous dissipation occur independently. Electrical and viscous dissipation coefficients that characterize the order volume fraction contributions of the suspended particles are calculated; the electrical dissipation coefficient is O(1) for all oscillation frequencies, whereas the latter vanishes at low- and high-frequencies. The fluid motion is shown to be a superposition of unsteady, viscous and potential flows past an oscillating particle with no applied electric field. The electro-osmotic flow field is insensitive to particle geometry and qualitatively different from the flow past an oscillating particle with no applied field.


2018 ◽  
Vol 115 (6) ◽  
pp. E1090-E1099 ◽  
Author(s):  
Allan M. Brooks ◽  
Syeda Sabrina ◽  
Kyle J. M. Bishop

The symmetry and shape of colloidal particles can direct complex particle motions through fluid environments powered by simple energy inputs. The ability to rationally design or “program” the dynamics of such active colloids is an important step toward the realization of colloidal machines, in which components assemble spontaneously in space and time to perform dynamic (dissipative) functions such as actuation and transport. Here, we systematically investigate the dynamics of polarizable particles of different shapes moving in an oscillating electric field via induced-charge electrophoresis (ICEP). We consider particles from each point group in three dimensions (3D) and identify the different rotational and translational motions allowed by symmetry. We describe how the 3D shape of rigid particles can be tailored to achieve desired dynamics including oscillatory motions, helical trajectories, and complex periodic orbits. The methodology we develop is generally applicable to the design of shape-directed particle motions powered by other energy inputs.


2009 ◽  
Vol 92 (6) ◽  
pp. 1366-1369 ◽  
Author(s):  
Ying Hou ◽  
Yiping Yao ◽  
Genqiang Zhang ◽  
Qingxuan Yu ◽  
Xiaoguang Li

1971 ◽  
Vol 5 (1) ◽  
pp. 107-113 ◽  
Author(s):  
C. S. Chen

An infinite, inhomogeneous electron plasma driven by a spatially uniform oscillating electric field is investigated. The multi-time perturbation method is used to analyze possible parametric excitations of transverse waves and to evaluate their growth rates. It is shown that there exist subharmonic excitations of: (1) a pair of transverse waves in an unmagnetized plasma and (2) a pair of one right and one left circularly polarized wave in a magnetoplasma. Additionally, parametric excitation of two right or two left circularly polarized waves with different frequencies can exist in a magnetoplasma. The subharmonic excitations are impossible whenever the density gradient and the applied electric field are perpendicular. However, parametric excitation is possible with all configurations.


2004 ◽  
Vol 307 (1) ◽  
pp. 151-159 ◽  
Author(s):  
S. A. GRIDNEV ◽  
A. A. GLAZUNOV ◽  
A. N. TSOTSORIN

2018 ◽  
Vol 32 (11) ◽  
pp. 11440-11451 ◽  
Author(s):  
Yudou Wang ◽  
Bo Liao ◽  
Zhaoyang Kong ◽  
Zhigang Sun ◽  
Li Qiu ◽  
...  

Langmuir ◽  
2005 ◽  
Vol 21 (11) ◽  
pp. 4874-4880 ◽  
Author(s):  
Simon O. Lumsdon ◽  
David M. Scott

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun-Yong Lee ◽  
Jeong-Seon Yu ◽  
Jong-Hyun Kim

Abstract Colloidal particles dispersed in nematic liquid crystals are aligned along the orientation that minimizes the elastic free energy. Through applying an electric field to a nematic colloidal system, the orientation of the director can change. Consequently, colloidal particles realign to minimize the total free energy, which is the sum of the elastic and electric free energies. Herein, we demonstrate that if the preferred rotation directions given by the electric and elastic free energies are different during realignment, the rotation direction of the particle can be controlled by how we apply the electric field. When the strength of the electric field gradually increases, the particles rotate in the same direction as the rotation of the director. However, when a sufficiently high electric field is suddenly applied, the particles rotate in the opposite direction. In this study, we analyzed the effect of free energy on the bidirectional rotation behavior of the particles using a theoretical model. This study provides an effective approach to control the rotational behavior of colloidal particles over a wide-angle range between two orientational local minima.


Sign in / Sign up

Export Citation Format

Share Document