scholarly journals Shape-directed dynamics of active colloids powered by induced-charge electrophoresis

2018 ◽  
Vol 115 (6) ◽  
pp. E1090-E1099 ◽  
Author(s):  
Allan M. Brooks ◽  
Syeda Sabrina ◽  
Kyle J. M. Bishop

The symmetry and shape of colloidal particles can direct complex particle motions through fluid environments powered by simple energy inputs. The ability to rationally design or “program” the dynamics of such active colloids is an important step toward the realization of colloidal machines, in which components assemble spontaneously in space and time to perform dynamic (dissipative) functions such as actuation and transport. Here, we systematically investigate the dynamics of polarizable particles of different shapes moving in an oscillating electric field via induced-charge electrophoresis (ICEP). We consider particles from each point group in three dimensions (3D) and identify the different rotational and translational motions allowed by symmetry. We describe how the 3D shape of rigid particles can be tailored to achieve desired dynamics including oscillatory motions, helical trajectories, and complex periodic orbits. The methodology we develop is generally applicable to the design of shape-directed particle motions powered by other energy inputs.

2020 ◽  
Vol 117 (12) ◽  
pp. 6437-6445 ◽  
Author(s):  
Hayley R. O. Sohn ◽  
Ivan I. Smalyukh

Malleability of metals is an example of how the dynamics of defects like dislocations induced by external stresses alters material properties and enables technological applications. However, these defects move merely to comply with the mechanical forces applied on macroscopic scales, whereas the molecular and atomic building blocks behave like rigid particles. Here, we demonstrate how motions of crystallites and the defects between them can arise within the soft matter medium in an oscillating electric field applied to a chiral liquid crystal with polycrystalline quasi-hexagonal arrangements of self-assembled topological solitons called “torons.” Periodic oscillations of electric field applied perpendicular to the plane of hexagonal lattices prompt repetitive shear-like deformations of the solitons, which synchronize the electrically powered self-shearing directions. The temporal evolution of deformations upon turning voltage on and off is not invariant upon reversal of time, prompting lateral translations of the crystallites of torons within quasi-hexagonal periodically deformed lattices. We probe how these motions depend on voltage and frequency of oscillating field applied in an experimental geometry resembling that of liquid crystal displays. We study the interrelations between synchronized deformations of the soft solitonic particles and their arrays, and the ensuing dynamics and giant number fluctuations mediated by motions of crystallites, five–seven defects pairs, and grain boundaries in the orderly organizations of solitons. We discuss how our findings may lead to technological and fundamental science applications of dynamic self-assemblies of topologically protected but highly deformable particle-like solitons.


2002 ◽  
Vol 16 (17n18) ◽  
pp. 2328-2333 ◽  
Author(s):  
ANAND YETHIRAJ ◽  
ALFONS VAN BLAADEREN

Colloidal particle coordinates in three dimensions can be obtained in 3D samples with a combination of the increased resolution and optical sectioning capabilities of confocal microscopy and fluorescently labeled model core-shell silica colloids. In this work we show how this capability can be used to analyze structure formation in electrorheological fluids on a quantitative basis. We find body-centered-tetragonal (BCT) crystals for colloidal particles in an electric field. Metastable sheet like structures were identified as an intermediate phase prior to BCT crystal formation. Due to finite-size effects induced by the electrode surface the sheets are not randomly oriented, but grow preferentially with a 60° tilt with respect to the electric field. Preliminary measurements indicate that flow-aligned sheets form under shear. Finally, we show that in the case that the ionic strength is very low, electric-field-induced dipolar interactions can be present in addition to long-range repulsions between the colloids leading to interesting metastable and equilibrium structures with possibilities for applications in photonic bandgap crystals as well as in model ER studies.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chunzheng Lv ◽  
Lirong He ◽  
Jiahong Tang ◽  
Feng Yang ◽  
Chuhong Zhang

AbstractAs an important photoconductive hybrid material, perylene/ZnO has attracted tremendous attention for photovoltaic-related applications, but generally faces a great challenge to design molecular level dispersed perylenes/ZnO nanohybrids due to easy phase separation between perylenes and ZnO nanocrystals. In this work, we reported an in-situ reaction method to prepare molecular level dispersed H-aggregates of perylene bisimide/ZnO nanorod hybrids. Surface photovoltage and electric field-induced surface photovoltage spectrum show that the photovoltage intensities of nanorod hybrids increased dramatically for 100 times compared with that of pristine perylene bisimide. The enhancement of photovoltage intensities resulting from two aspects: (1) the photo-generated electrons transfer from perylene bisimide to ZnO nanorod due to the electric field formed on the interface of perylene bisimide/ZnO; (2) the H-aggregates of perylene bisimide in ZnO nanorod composites, which is beneficial for photo-generated charge separation and transportation. The introduction of ordered self-assembly thiol-functionalized perylene-3,4,9,10-tetracarboxylic diimide (T-PTCDI)/ ZnO nanorod composites induces a significant improvement in incident photo-to-electron conversion efficiency. This work provides a novel mentality to boost photo-induced charge transfer efficiency, which brings new inspiration for the preparation of the highly efficient solar cell.


1971 ◽  
Vol 5 (1) ◽  
pp. 107-113 ◽  
Author(s):  
C. S. Chen

An infinite, inhomogeneous electron plasma driven by a spatially uniform oscillating electric field is investigated. The multi-time perturbation method is used to analyze possible parametric excitations of transverse waves and to evaluate their growth rates. It is shown that there exist subharmonic excitations of: (1) a pair of transverse waves in an unmagnetized plasma and (2) a pair of one right and one left circularly polarized wave in a magnetoplasma. Additionally, parametric excitation of two right or two left circularly polarized waves with different frequencies can exist in a magnetoplasma. The subharmonic excitations are impossible whenever the density gradient and the applied electric field are perpendicular. However, parametric excitation is possible with all configurations.


2021 ◽  
Author(s):  
Haidong Li ◽  
Yanyan Song ◽  
Jiyun Zhang ◽  
Jiating He

The application of built-in electric field due to piezoelectric potential is one of the most efficient approaches for photo-induced charge transport and separation. However, the efficiency of converting mechanical energy...


2018 ◽  
Vol 32 (11) ◽  
pp. 11440-11451 ◽  
Author(s):  
Yudou Wang ◽  
Bo Liao ◽  
Zhaoyang Kong ◽  
Zhigang Sun ◽  
Li Qiu ◽  
...  

Langmuir ◽  
2005 ◽  
Vol 21 (11) ◽  
pp. 4874-4880 ◽  
Author(s):  
Simon O. Lumsdon ◽  
David M. Scott

2001 ◽  
Author(s):  
Aijun Wang ◽  
Pushpendra Singh ◽  
Nadine Aubry

Abstract A new distributed multiplier/fictitious (DLM) domain method is developed for direct simulation of electrorheological (ER) suspensions subjected to spatially uniform electrical fields. The method is implemented both in two and three dimensions. The fluid-particle system is treated implicitly using the combined weak formulation described in [1,2]. The governing Navier-Stokes equations for the fluid are solved everywhere, including the interior of the particles. The flow inside the particles is forced to be a rigid body motion by a distribution of Lagrange multipliers. The electrostatic force acting on the polarized spherical particles is modeled based on the point-dipole approximation. Using our code we have studied the time evolution of particle-scale structures of ER suspensions in channels subjected to the pressure driven flow. In our study, the flow direction is perpendicular to that of the electric field. Simulations show that when the hydrodynamic force is zero, or very small compared to the electrostatic force, the particles form chains that are aligned approximately parallel to the direction of electric field. But, when the magnitude of hydrodynamic force is comparable to that of the electrostatic force the particle chains orient at an angle with the direction of the electric field. The angle between the particle chain and the direction of the electric field depends on the relative strengths of the hydrodynamic and electrostatic forces.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1008
Author(s):  
Pablo Miguel Ramos ◽  
Miguel Herranz ◽  
Katerina Foteinopoulou ◽  
Nikos Ch. Karayiannis ◽  
Manuel Laso

In the present work, we revise and extend the Characteristic Crystallographic Element (CCE) norm, an algorithm used to simultaneously detect radial and orientational similarity of computer-generated structures with respect to specific reference crystals and local symmetries. Based on the identification of point group symmetry elements, the CCE descriptor is able to gauge local structure with high precision and finely distinguish between competing morphologies. As test cases we use computer-generated monomeric and polymer systems of spherical particles interacting with the hard-sphere and square-well attractive potentials. We demonstrate that the CCE norm is able to detect and differentiate, between others, among: hexagonal close packed (HCP), face centered cubic (FCC), hexagonal (HEX) and body centered cubic (BCC) crystals as well as non-crystallographic fivefold (FIV) local symmetry in bulk 3-D systems; triangular (TRI), square (SQU) and honeycomb (HON) crystals, as well as pentagonal (PEN) local symmetry in thin films of one-layer thickness (2-D systems). The descriptor is general and can be applied to identify the symmetry elements of any point group for arbitrary atomic or particulate system in two or three dimensions, in the bulk or under confinement.


Sign in / Sign up

Export Citation Format

Share Document