Unsteady electrophoretic motion of a non-spherical colloidal particle in an oscillating electric field

1994 ◽  
Vol 278 ◽  
pp. 149-174 ◽  
Author(s):  
Michael Loewenberg

The oscillatory motion of an electrically charged non-spherical colloidal particle in an oscillating electric field is investigated. The particle is immersed in an incompressible viscous fluid and assumed to have a thin electric double layer. For moderate-aspect-ration spheroids and cylinders, a simple algebraic expression is derived that accurately describes oscillatory electrophoretic particle motion in terms of the steady Stokes resistance, added mass, and Basset force. The effects of double-layer conduction and displacement currents within dielectric particles are included. The results indicate that electroacoustic measurements may be able to determine the ζ-potential, dielectric constant, surface conductivity (and microstructural information contained therein), size, density, volume fraction, and possibly shape of non-spherical particles in a dilute suspension. A simple formula is obtained for the high-frequency electrical conductivity of a dilute suspension of colloidal spheroids with arbitrary charge and dielectric constant; only the added mass and Basset force are required and the requisite parameters are given. The result is needed for electroacoustic measurements but it may also be independently useful for determining the dielectric constant, surface conductivity, volume fraction, and possibly the shape of non-spherical particles in a dilute suspension. Electroacoustic energy dissipation is described for a dilute colloidal suspension. It is shown that resistive electrical heating and viscous dissipation occur independently. Electrical and viscous dissipation coefficients that characterize the order volume fraction contributions of the suspended particles are calculated; the electrical dissipation coefficient is O(1) for all oscillation frequencies, whereas the latter vanishes at low- and high-frequencies. The fluid motion is shown to be a superposition of unsteady, viscous and potential flows past an oscillating particle with no applied electric field. The electro-osmotic flow field is insensitive to particle geometry and qualitatively different from the flow past an oscillating particle with no applied field.

2018 ◽  
Vol 08 (06) ◽  
pp. 1850040 ◽  
Author(s):  
Xuefan Zhou ◽  
Lu Wang ◽  
Guoliang Xue ◽  
Kechao Zhou ◽  
Hang Luo ◽  
...  

The high-performance energy-storage dielectric capacitors are increasingly important due to their wide applications in high power electronics. Here, we fabricated a novel P(VDF-HFP)-based capacitor with surface-modified NBT-[Formula: see text]ST ([Formula: see text], 0.10, 0.26) whiskers, denoted as Dop@NBT-[Formula: see text]ST/P(VDF-HFP). The influences of ST content, fillers’ volume fraction and electric field on the dielectric properties and energy-storage performance of the composites were investigated systematically. The results show that the dielectric constant monotonously increased with the increase of ST content and fillers’ volume fraction. The composite containing 10.0 vol% NBT-0.26ST whiskers possessed a dielectric constant of 39 at 1[Formula: see text]kHz, which was 5.6 times higher than that of pure P(VDF-HFP). It was noticed that the D-E loops of the composites became thinner and thinner with the increase of ST content. Due to the reduced remnant polarization, the composite with 5.0 vol% NBT-0.26ST whiskers achieved a high energy density of 6.18[Formula: see text]J/cm3 and energy efficiency of approximately 57% at a relatively low electric field of 200[Formula: see text]kV/mm. This work indicated that NBT-0.26ST whisker is a kind of potential ceramic filler in fabricating the dielectric capacitor with high discharged energy density and energy efficiency.


1977 ◽  
Vol 83 (1) ◽  
pp. 97-117 ◽  
Author(s):  
G. K. Batchelor

The effect of Brownian motion of particles in a statistically homogeneous suspension is to tend to make uniform the joint probability density functions for the relative positions of particles, in opposition to the tendency of a deforming motion of the suspension to make some particle configurations more common. This smoothing process of Brownian motion can be represented by the action of coupled or interactive steady ‘thermodynamic’ forces on the particles, which have two effects relevant to the bulk stress in the suspension. Firstly, the system of thermodynamic forces on particles makes a direct contribution to the bulk stress; and, secondly, thermodynamic forces change the statistical properties of the relative positions of particles and so affect the bulk stress indirectly. These two effects are analysed for a suspension of rigid spherical particles. In the case of a dilute suspension both the direct and indirect contributions to the bulk stress due to Brownian motion are of order ø2, where ø([Lt ] 1) is the volume fraction of the particles, and an explicit expression for this leading approximation is constructed in terms of hydrodynamic interactions between pairs of particles. The differential equation representing the effects of the bulk deforming motion and the Brownian motion on the probability density of the separation vector of particle pairs in a dilute suspension is also investigated, and is solved numerically for the case of relatively strong Brownian motion. The suspension has approximately isotropic structure in this case, regardless of the nature of the bulk flow, and the effective viscosity representing the stress system to order ϕ2 is found to be \[ \mu^{*} = \mu(1+2.5\phi + 6.2\phi^2). \] The value of the coefficient of ø2 for steady pure straining motion in the case of weak Brownian motion is known to be 7[sdot ]6, which indicates a small degree of ‘strain thickening’ in the ø2-term.


1996 ◽  
Vol 10 (23n24) ◽  
pp. 3219-3226 ◽  
Author(s):  
Yue Hu ◽  
Vidya Kumar ◽  
Kristen E. Blackmon

Polarization of surface ions on a spherical colloidal particle in a transient electric field is simulated using a random walk method. Total polarization increases as ion density increases but saturates when the Coulomb repulsive forces between the ions become dominant. The time constant of polarization is shorter for larger ion densities, and non-linear relations between polarization and the electric field strength are also seen.


1988 ◽  
Vol 190 ◽  
pp. 71-86 ◽  
Author(s):  
R. W. O'Brien

Sound waves can be generated in a colloid by the application of an alternating electric field. In this paper we describe the method for calculating this and the related electro-acoustic phenomenon of electric fields generated by sound waves. As an illustration of the procedure, we obtain formulae for these two effects for a suspension of spherical particles with thin double layers, in a parallel plate geometry.


The stress versus rate of strain relationship for a dilute suspension of conducting spherical particles in a dielectric fluid is worked out under conditions of simple steady shearing flow in a transverse electric field. The relationship is found to be nonlinear and multivalued so that under certain simple circumstances hysteresis and catastrophic changes in stress or strain rate can occur. The work is of interest in the general study of electro-rheological fluids.


Sign in / Sign up

Export Citation Format

Share Document