Re-assessment of silicon isotope reference materials using high-resolution multi-collector ICP-MS

2006 ◽  
Vol 21 (3) ◽  
pp. 266 ◽  
Author(s):  
Ben C. Reynolds ◽  
R. Bastian Georg ◽  
Felix Oberli ◽  
Uwe Wiechert ◽  
Alex N. Halliday
2006 ◽  
Vol 21 (8) ◽  
pp. 734 ◽  
Author(s):  
Sander H. J. M. van den Boorn ◽  
Pieter Z. Vroon ◽  
Coos C. van Belle ◽  
Bas van der Wagt ◽  
Johannes Schwieters ◽  
...  

2004 ◽  
Vol 28 (2) ◽  
pp. 305-310 ◽  
Author(s):  
Claudia P.R. Morcelli ◽  
Ana Maria G. Figueiredo ◽  
Jacinta Enzweiler ◽  
Jorge E.S. Sarkis ◽  
Alexandre P.S. Jorge ◽  
...  

Author(s):  
Zhen Zeng ◽  
Yu‐Fang Sun ◽  
Hao‐Ye Tang ◽  
Guo‐Xing Lu ◽  
Lin Yang ◽  
...  

2015 ◽  
Vol 39 (3) ◽  
pp. 341-356 ◽  
Author(s):  
Yongsheng He ◽  
Shan Ke ◽  
Fang-Zhen Teng ◽  
Tiantian Wang ◽  
Hongjie Wu ◽  
...  

2019 ◽  
Vol 85 (6) ◽  
pp. 11-24
Author(s):  
I. V. Nikolaeva ◽  
A. A. Kravchenko ◽  
S. V. Palessky ◽  
S. V. Nechepurenko ◽  
D. V. Semenova

Two methods — ICP-MS and ICP-AES are used for certification of the new reference material — needles of Siberian pine (NSP-1). Techniques of the analysis include decomposition of plant samples in two different ways: acid digestion in a microwave system MARS-5 and lithium metaborate fusion followed by ICP-MS and ICP-AES analysis of the solutions. Simultaneous determinations of all the elements were carried out in low, medium and high resolution using SF-mass-spectrometer ELEMENT and atomic-emission spectrometer IRIS Advantage with external calibrations and internal standards (In — ICP-MS, Sc —ICP-AES). Middle and high resolutions of ICP mass spectrometer were used for interference corrections. Data obtained by ICP-MS and ICP-AES with different decomposition techniques are in good agreement. The ICP-MS and ICP-AES techniques have been validated by the analysis of three plant reference materials: LB-1 (leaf of a birch), Tr-1 (grass mixture) and EK-1 (Canadian pondweed). These techniques were used for the determination of 38 elements in the new reference material NSP-1. Relative standard deviations for most of the determined elements were below 10%. Combination of ICP-MS and ICP-AES techniques for certification of the new reference material makes it possible to expand the set of elements to be determined and to reduce the total analysis time.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hansol Lee ◽  
Myung Jun Lee ◽  
Eun-Joo Kim ◽  
Gi Yeong Huh ◽  
Jae-Hyeok Lee ◽  
...  

AbstractAbnormal iron accumulation around the substantia nigra (SN) is a diagnostic indicator of Parkinsonism. This study aimed to identify iron-related microarchitectural changes around the SN of brains with progressive supranuclear palsy (PSP) via postmortem validations and in vivo magnetic resonance imaging (MRI). 7 T high-resolution MRI was applied to two postmortem brain tissues, from one normal brain and one PSP brain. Histopathological examinations were performed to demonstrate the molecular origin of the high-resolution postmortem MRI findings, by using ferric iron staining, myelin staining, and two-dimensional laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging. In vivo iron-related MRI was performed on five healthy controls, five patients with Parkinson’s disease (PD), and five patients with PSP. In the postmortem examination, excessive iron deposition along the myelinated fiber at the anterior SN and third cranial nerve (oculomotor nerve) fascicles of the PSP brain was verified by LA-ICP-MS. This region corresponded to those with high R2* values and positive susceptibility from quantitative susceptibility mapping (QSM), but was less sensitive in Perls’ Prussian blue staining. In in vivo susceptibility-weighted imaging, hypointense pixels were observed in the region between the SN and red nucleus (RN) in patients with PSP, but not in healthy controls and patients with PD. R2* and QSM values of such region were significantly higher in patients with PSP compared to those in healthy controls and patients with PD as well (vs. healthy control: p = 0.008; vs. PD: p = 0.008). Thus, excessive iron accumulation along the myelinated fibers at the anterior SN and oculomotor nerve fascicles may be a pathological characteristic and crucial MR biomarker in a brain with PSP.


Author(s):  
Lei Xu ◽  
Wen Zhang ◽  
Tao Luo ◽  
Jin-Hui Yang ◽  
Zhaochu Hu

High precise and accurate measurements of Fe isotope ratios for fourteen reference materials from the USGS, MPI-DING and CGSG were successfully carried out using a developed analytical technique by fs...


2017 ◽  
Vol 29 (4) ◽  
pp. 382-393
Author(s):  
A. Massam ◽  
S.B. Sneed ◽  
G.P. Lee ◽  
R.R. Tuckwell ◽  
R. Mulvaney ◽  
...  

AbstractA model to estimate the annual layer thickness of deposited snowfall at a deep ice core site, compacted by vertical strain with respect to depth, is assessed using ultra-high-resolution laboratory analytical techniques. A recently established technique of high-resolution direct chemical analysis of ice using ultra-violet laser ablation inductively-coupled plasma mass spectrometry (LA ICP-MS) has been applied to ice from the Berkner Island ice core, and compared with results from lower resolution techniques conducted on parallel sections of ice. The results from both techniques have been analysed in order to assess the capability of each technique to recover seasonal cycles from deep Antarctic ice. Results do not agree with the annual layer thickness estimates from the age–depth model for individual samples <1 m long as the model cannot reconstruct the natural variability present in annual accumulation. However, when compared with sections >4 m long, the deviation between the modelled and observational layer thicknesses is minimized to within two standard deviations. This confirms that the model is capable of successfully estimating mean annual layer thicknesses around analysed sections. Furthermore, our results confirm that the LA ICP-MS technique can reliably recover seasonal chemical profiles beyond standard analytical resolution.


Sign in / Sign up

Export Citation Format

Share Document