Head-space single drop microextraction combined with gas chromatography with an electron capture detector for determination of iodine in infant formulas

2013 ◽  
Vol 5 (3) ◽  
pp. 778-783 ◽  
Author(s):  
Jeiran Akhoundzadeh ◽  
Mahmood Chamsaz ◽  
Samaneh Raouf Yazdinezhad ◽  
Mohammad Hossein Arbaz-zavvar
1971 ◽  
Vol 54 (3) ◽  
pp. 711-712
Author(s):  
Martha Fuzesi

Abstract A gas chromatographic method is described for the quantitative determination of N-butyl-N-ethyl-α,α,α-trifluoro-2,6-dinitro-p-tolindine and α,α,α-trifluoro-2,6-dinitro-N,N-dipropyI-p-toluidine herbicides in formulations. The sample is extracted with benzene, and equal amounts of sample and reference solution in the same concentration range are analyzed by gas chromatography, using an electron capture detector and an SE-30/Diatoport S column. The method has been applied successfully to laboratory-prepared and commercial samples.


2013 ◽  
Vol 838-841 ◽  
pp. 2566-2569
Author(s):  
Jian Qi Sun ◽  
Bo Qiao ◽  
Jun Dai

This study describes an analytical method employing capillary gas chromatography (GC) using flame ionization detection (FID) that has been developed for the simultaneous determination of chlorobenzenes (m-dichlorobenzene (m-DCB),p-dichlorobenzene (p-DCB),o-dichlorobenzene (o-DCB) and 1,2,4-trichlorobenzene (1,2,4-TCB)) in wastewater. For this purpose, single-drop microextraction (SDME) was applied as a sample preparation technique. The SDME parameters such as types of extractants, volume of the microdroplet size, extraction time, stir rate and immersion depth of needle point were studyed and optimized. The method was linear in the ranges from 4.0×10-3to 40.0 μg·mL-1form-DCB,p-DCB ando-DCB, and 4.0×10-3to 30.0 μg·mL-1for 1,2,4-TCB withR2≥0.9955. The SDME procedure allowed efficient recovery of the investigated chlorobenzenes ranging between 80 % and 105 % with a relative standard deviation (RSD) ≤6.5 for actual wastewater sampes spiked with 2, 5 and 10 μg·mL-1of chlorobenzes, respectively. These results showed the potential of this technique for chlorobenzenes monitoring in wastewater samples. Furthermore, the investigated methods are simple, reliable, reproducible, and not expensive.


Chemosphere ◽  
2013 ◽  
Vol 93 (8) ◽  
pp. 1556-1560 ◽  
Author(s):  
Samuel Afful ◽  
Johannes A.M. Awudza ◽  
Stevester K. Twumasi ◽  
Shiloh Osae

2006 ◽  
Vol 89 (5) ◽  
pp. 1437-1442 ◽  
Author(s):  
Suxia Zhang ◽  
Fengyun Sun ◽  
Jiancheng Li ◽  
Linli Cheng ◽  
Jianzhong Shen

Abstract A rapid and sensitive gas chromatography method was developed for the simultaneous determination of florfenicol (FF) and its metabolite florfenicol amine (FFA) in fish, shrimp, and swine muscle. The extracted samples were defatted with hexane and cleaned up by solid-phase extraction using Oasis MCX cartridges. The eluate was evaporated to dryness, and residues were derivatized and determined by gas chromatography with a microcell electron capture detector. Overall average recoveries ranged from 81.7 to 109.7% for fish, 94.1 to 103.4% for shrimp, and 71.5 to 91.4% for swine muscle. The detection limit was 0.5 ng/g for FF and 1 ng/g for FFA, respectively. The method was validated for the determination of incurred swine muscle samples in an actual residue study.


Sign in / Sign up

Export Citation Format

Share Document