Interfacial polymer phase segregation and self-assembly of square colloidal crystals

Soft Matter ◽  
2012 ◽  
Vol 8 (25) ◽  
pp. 6684 ◽  
Author(s):  
Matthew M. Shindel ◽  
Szu-Wen Wang ◽  
Ali Mohraz
Author(s):  
Zhengting Zhang ◽  
Guiyun Yi ◽  
Xiaodong Wang ◽  
Peng Li ◽  
Zhuoyan Wan ◽  
...  

Particuology ◽  
2011 ◽  
Vol 9 (6) ◽  
pp. 559-565 ◽  
Author(s):  
Zhirong Li ◽  
Jingxia Wang ◽  
Yanlin Song

2015 ◽  
Vol 17 (41) ◽  
pp. 27653-27657 ◽  
Author(s):  
Jeffrey E. Chen ◽  
Hong-Yuan Lian ◽  
Saikat Dutta ◽  
Saad M. Alshehri ◽  
Yusuke Yamauchi ◽  
...  

This study illustrates the directed self-assembly of mesoporous TiO2 with magnetic properties due to its colloidal crystal structure with Fe3O4.


2020 ◽  
Author(s):  
Shuaiyuan Han ◽  
Sandrine Pensec ◽  
Cédric Lorthioir ◽  
Jacques Jestin ◽  
Jean-Michel Guigner ◽  
...  

Janus cylinders are one-dimensional colloids that have two faces with different compositions and functionalities and are useful as building blocks for advanced functional materials. Such anisotropic objects are difficult to prepare with nanometric dimensions. Here we describe a robust and versatile strategy to form micrometer long Janus nanorods with diameters in the 10-nanometer range, by self-assembly in water of end-functionalized polymers. For the first time, the Janus topology is not a result of the phase segregation of incompatible polymer arms, but is driven by the interactions between unsymmetrical and complementary hydrogen bonded stickers. It is therefore independent of the actual polymers used and works even for compatible polymers. To illustrate their applicative potential, we show that these Janus nanorods can efficiently stabilize oil-in-water emulsions.


2007 ◽  
Vol 19 (7) ◽  
pp. 1584-1591 ◽  
Author(s):  
Jonathan G. McGrath ◽  
Robert D. Bock ◽  
J. Michael Cathcart ◽  
L. Andrew Lyon

2007 ◽  
Vol 31 ◽  
pp. 117-119
Author(s):  
Li Gao ◽  
Qing Feng Yan ◽  
C.C. Wong ◽  
Yet Ming Chiang

Convective self-assembly of colloidal spheres provides a simple method for fabricating two and three dimensional colloidal crystals. In this work, we investigated the layer transitions phenomena during colloidal self-assembly in a sessile drop by using an in-situ videoscopic set-up. The effects of surface charge, colloidal concentration, and surfactant additions were examined. The results show that the chemical environment plays an important role in colloidal self-assembly. In the case of ordered growth, different layer transition phenomena were observed when the colloidal concentration is different.


Sign in / Sign up

Export Citation Format

Share Document